{"title":"低复杂度在线卷积波束形成","authors":"Sebastian Braun, I. Tashev","doi":"10.1109/WASPAA52581.2021.9632780","DOIUrl":null,"url":null,"abstract":"Convolutional beamformers integrate the multichannel linear prediction model into beamformers, which provide good performance and optimality for joint dereverberation and noise reduction tasks. While longer filters are required to model long reverberation times, the computational burden of current online solutions grows fast with the filter length and number of microphones. In this work, we propose a low complexity convolutional beamformer using a Kalman filter derived affine projection algorithm to solve the adaptive filtering problem. The proposed solution is several orders of magnitude less complex than comparable existing solutions while slightly outperforming them on the REVERB challenge dataset.","PeriodicalId":429900,"journal":{"name":"2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Low Complexity Online Convolutional Beamforming\",\"authors\":\"Sebastian Braun, I. Tashev\",\"doi\":\"10.1109/WASPAA52581.2021.9632780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional beamformers integrate the multichannel linear prediction model into beamformers, which provide good performance and optimality for joint dereverberation and noise reduction tasks. While longer filters are required to model long reverberation times, the computational burden of current online solutions grows fast with the filter length and number of microphones. In this work, we propose a low complexity convolutional beamformer using a Kalman filter derived affine projection algorithm to solve the adaptive filtering problem. The proposed solution is several orders of magnitude less complex than comparable existing solutions while slightly outperforming them on the REVERB challenge dataset.\",\"PeriodicalId\":429900,\"journal\":{\"name\":\"2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WASPAA52581.2021.9632780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WASPAA52581.2021.9632780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Convolutional beamformers integrate the multichannel linear prediction model into beamformers, which provide good performance and optimality for joint dereverberation and noise reduction tasks. While longer filters are required to model long reverberation times, the computational burden of current online solutions grows fast with the filter length and number of microphones. In this work, we propose a low complexity convolutional beamformer using a Kalman filter derived affine projection algorithm to solve the adaptive filtering problem. The proposed solution is several orders of magnitude less complex than comparable existing solutions while slightly outperforming them on the REVERB challenge dataset.