mZig

L. Kong, Xuemei Liu
{"title":"mZig","authors":"L. Kong, Xuemei Liu","doi":"10.1145/2789168.2790104","DOIUrl":null,"url":null,"abstract":"This paper presents mZig, a novel physical layer design that enables a receiver to simultaneously decode multiple packets from different transmitters in ZigBee. As a low-power and low-cost wireless protocol, the promising ZigBee has been widely used in sensor networks, cyber-physical systems, and smart buildings. Since ZigBee based networks usually adopt tree or cluster topology, the convergecast scenarios are common in which multiple transmitters need to send packets to one receiver. For example, in a smart home, all appliances report data to one control plane via ZigBee. However, concurrent transmissions in convergecast lead to the severe collision problem. The conventional ZigBee avoids collisions using backoff time, which introduces additional time overhead. Advanced methods resolve collisions instead of avoidance, in which the state-of-the-art ZigZag resolves one m-packet collision requiring m retransmissions. We propose mZig to resolve one m-packet collision by this collision itself, so the theoretical throughput is improved m-fold. Leveraging the unique features in ZigBee's physical layer including its chip rate, half-sine pulse shaping and O-QPSK modulation, mZig subtly decomposes multiple packets from one collision in baseband signal processing. The practical factors of noise, multipath, and frequency offset are taken into account in mZig design. We implement mZig on USRPs and establish a seven-node testbed. Experiment results demonstrate that mZig can receive up to four concurrent packets in our testbed. The throughput of mZig is 4.5x of the conventional ZigBee and 3.2x of ZigZag in the convergecast with four or more transmitters.","PeriodicalId":424497,"journal":{"name":"Proceedings of the 21st Annual International Conference on Mobile Computing and Networking","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"mZig\",\"authors\":\"L. Kong, Xuemei Liu\",\"doi\":\"10.1145/2789168.2790104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents mZig, a novel physical layer design that enables a receiver to simultaneously decode multiple packets from different transmitters in ZigBee. As a low-power and low-cost wireless protocol, the promising ZigBee has been widely used in sensor networks, cyber-physical systems, and smart buildings. Since ZigBee based networks usually adopt tree or cluster topology, the convergecast scenarios are common in which multiple transmitters need to send packets to one receiver. For example, in a smart home, all appliances report data to one control plane via ZigBee. However, concurrent transmissions in convergecast lead to the severe collision problem. The conventional ZigBee avoids collisions using backoff time, which introduces additional time overhead. Advanced methods resolve collisions instead of avoidance, in which the state-of-the-art ZigZag resolves one m-packet collision requiring m retransmissions. We propose mZig to resolve one m-packet collision by this collision itself, so the theoretical throughput is improved m-fold. Leveraging the unique features in ZigBee's physical layer including its chip rate, half-sine pulse shaping and O-QPSK modulation, mZig subtly decomposes multiple packets from one collision in baseband signal processing. The practical factors of noise, multipath, and frequency offset are taken into account in mZig design. We implement mZig on USRPs and establish a seven-node testbed. Experiment results demonstrate that mZig can receive up to four concurrent packets in our testbed. The throughput of mZig is 4.5x of the conventional ZigBee and 3.2x of ZigZag in the convergecast with four or more transmitters.\",\"PeriodicalId\":424497,\"journal\":{\"name\":\"Proceedings of the 21st Annual International Conference on Mobile Computing and Networking\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st Annual International Conference on Mobile Computing and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2789168.2790104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st Annual International Conference on Mobile Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2789168.2790104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
mZig
This paper presents mZig, a novel physical layer design that enables a receiver to simultaneously decode multiple packets from different transmitters in ZigBee. As a low-power and low-cost wireless protocol, the promising ZigBee has been widely used in sensor networks, cyber-physical systems, and smart buildings. Since ZigBee based networks usually adopt tree or cluster topology, the convergecast scenarios are common in which multiple transmitters need to send packets to one receiver. For example, in a smart home, all appliances report data to one control plane via ZigBee. However, concurrent transmissions in convergecast lead to the severe collision problem. The conventional ZigBee avoids collisions using backoff time, which introduces additional time overhead. Advanced methods resolve collisions instead of avoidance, in which the state-of-the-art ZigZag resolves one m-packet collision requiring m retransmissions. We propose mZig to resolve one m-packet collision by this collision itself, so the theoretical throughput is improved m-fold. Leveraging the unique features in ZigBee's physical layer including its chip rate, half-sine pulse shaping and O-QPSK modulation, mZig subtly decomposes multiple packets from one collision in baseband signal processing. The practical factors of noise, multipath, and frequency offset are taken into account in mZig design. We implement mZig on USRPs and establish a seven-node testbed. Experiment results demonstrate that mZig can receive up to four concurrent packets in our testbed. The throughput of mZig is 4.5x of the conventional ZigBee and 3.2x of ZigZag in the convergecast with four or more transmitters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信