{"title":"基于扩展卡尔曼滤波的交通状态变量估计与预测","authors":"J. Abdi, B. Moshiri, E. Jafari, A. K. Sedigh","doi":"10.1109/ICPCES.2010.5698624","DOIUrl":null,"url":null,"abstract":"To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of traffic systems. METANET model is one of the most applicable models in traffic modeling which parameters have plenty of effects on model behavior. In this paper, we describe the effects of the model parameters on the model behavior and the estimation quality of system states in the case of undetermined parameters. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic traffic networks for preparing proper signal in traffic control.","PeriodicalId":439893,"journal":{"name":"2010 International Conference on Power, Control and Embedded Systems","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Traffic state variables estimating and predicting with extended Kalman filtering\",\"authors\":\"J. Abdi, B. Moshiri, E. Jafari, A. K. Sedigh\",\"doi\":\"10.1109/ICPCES.2010.5698624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of traffic systems. METANET model is one of the most applicable models in traffic modeling which parameters have plenty of effects on model behavior. In this paper, we describe the effects of the model parameters on the model behavior and the estimation quality of system states in the case of undetermined parameters. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic traffic networks for preparing proper signal in traffic control.\",\"PeriodicalId\":439893,\"journal\":{\"name\":\"2010 International Conference on Power, Control and Embedded Systems\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Power, Control and Embedded Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPCES.2010.5698624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Power, Control and Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPCES.2010.5698624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Traffic state variables estimating and predicting with extended Kalman filtering
To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of traffic systems. METANET model is one of the most applicable models in traffic modeling which parameters have plenty of effects on model behavior. In this paper, we describe the effects of the model parameters on the model behavior and the estimation quality of system states in the case of undetermined parameters. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic traffic networks for preparing proper signal in traffic control.