马尔可夫脉冲噪声中PSK信号的Viterbi检测

Ahmed Mahmood, M. Chitre
{"title":"马尔可夫脉冲噪声中PSK信号的Viterbi检测","authors":"Ahmed Mahmood, M. Chitre","doi":"10.1109/OCEANSKOBE.2018.8558810","DOIUrl":null,"url":null,"abstract":"The ambient soundscape in warm shallow waters is dominated by snapping shrimp noise at frequencies greater than 2 kHz. The noise process is impulsive and exhibits memory. Within the human audible range, this manifests as a persistent background crackle, akin to the popping of corn. Unless catered for, underwater acoustic communication systems are vulnerable to large drops in error performance in such waters. With the advent of new effective statistical models, namely the $\\alpha$-sub-Gaussian noise model with memory order $m(\\alpha \\mathbf{SGN}(m))$, it is now possible to mitigate snapping shrimp noise by exploiting the latter's temporal amplitude statistics. In our work, we accomplish this by deriving the passband Viterbi algorithm (VA) for a single-carrier scheme in $\\alpha \\mathbf{SGN}(m)$. The results are compared to the symbol-by-symbol maximum-likelihood (ML) detector and conventional L2-norm detection in scenarios representative of severe snapping shrimp noise. As the VA algorithm is optimal in $\\alpha \\mathbf{SGN}(m)$, it is of much interest to know how it fairs in snapping shrimp noise. This is investigated in our work.","PeriodicalId":441405,"journal":{"name":"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Viterbi Detection of PSK Signals in Markov Impulsive Noise\",\"authors\":\"Ahmed Mahmood, M. Chitre\",\"doi\":\"10.1109/OCEANSKOBE.2018.8558810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ambient soundscape in warm shallow waters is dominated by snapping shrimp noise at frequencies greater than 2 kHz. The noise process is impulsive and exhibits memory. Within the human audible range, this manifests as a persistent background crackle, akin to the popping of corn. Unless catered for, underwater acoustic communication systems are vulnerable to large drops in error performance in such waters. With the advent of new effective statistical models, namely the $\\\\alpha$-sub-Gaussian noise model with memory order $m(\\\\alpha \\\\mathbf{SGN}(m))$, it is now possible to mitigate snapping shrimp noise by exploiting the latter's temporal amplitude statistics. In our work, we accomplish this by deriving the passband Viterbi algorithm (VA) for a single-carrier scheme in $\\\\alpha \\\\mathbf{SGN}(m)$. The results are compared to the symbol-by-symbol maximum-likelihood (ML) detector and conventional L2-norm detection in scenarios representative of severe snapping shrimp noise. As the VA algorithm is optimal in $\\\\alpha \\\\mathbf{SGN}(m)$, it is of much interest to know how it fairs in snapping shrimp noise. This is investigated in our work.\",\"PeriodicalId\":441405,\"journal\":{\"name\":\"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANSKOBE.2018.8558810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSKOBE.2018.8558810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在温暖的浅水环境声景以捕虾噪声为主,频率大于2khz。噪声过程是脉冲的,具有记忆性。在人类可听到的范围内,这表现为持续的背景噼啪声,类似于玉米爆裂的声音。除非特别考虑,否则在这样的水域中,水声通信系统很容易受到误差性能大幅下降的影响。随着新的有效统计模型的出现,即具有存储器阶数$m(\alpha \mathbf{SGN}(m))$的$\alpha$-亚高斯噪声模型,现在可以通过利用后者的时间幅度统计来减轻捕捉虾噪声。在我们的工作中,我们通过在$\alpha \mathbf{SGN}(m)$中推导单载波方案的通带Viterbi算法(VA)来实现这一点。将结果与逐符号的最大似然(ML)检测器和传统的l2范数检测器在典型的严重捕虾噪声场景中进行了比较。由于VA算法在$\alpha \mathbf{SGN}(m)$中是最优的,因此了解它如何捕获虾噪声是非常有趣的。我们在工作中对此进行了调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Viterbi Detection of PSK Signals in Markov Impulsive Noise
The ambient soundscape in warm shallow waters is dominated by snapping shrimp noise at frequencies greater than 2 kHz. The noise process is impulsive and exhibits memory. Within the human audible range, this manifests as a persistent background crackle, akin to the popping of corn. Unless catered for, underwater acoustic communication systems are vulnerable to large drops in error performance in such waters. With the advent of new effective statistical models, namely the $\alpha$-sub-Gaussian noise model with memory order $m(\alpha \mathbf{SGN}(m))$, it is now possible to mitigate snapping shrimp noise by exploiting the latter's temporal amplitude statistics. In our work, we accomplish this by deriving the passband Viterbi algorithm (VA) for a single-carrier scheme in $\alpha \mathbf{SGN}(m)$. The results are compared to the symbol-by-symbol maximum-likelihood (ML) detector and conventional L2-norm detection in scenarios representative of severe snapping shrimp noise. As the VA algorithm is optimal in $\alpha \mathbf{SGN}(m)$, it is of much interest to know how it fairs in snapping shrimp noise. This is investigated in our work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信