减少独立计算量大的客观问题的客观评价次数的方法

Gregory Rohling
{"title":"减少独立计算量大的客观问题的客观评价次数的方法","authors":"Gregory Rohling","doi":"10.1109/CEC.2008.4631245","DOIUrl":null,"url":null,"abstract":"In this paper, three new methods for pushing solutions toward a desired region of the objective space more quickly are explored; hypercube distance scaling, dynamic objective thresholding, and hypercube distance objective ordering. These methods are applicable for problems that do not require the entire Pareto front and that require an independent computationally expensive computation for each objective. The performance of these methods is evaluated with the multiple objective 0/1 knapsack problem.","PeriodicalId":328803,"journal":{"name":"2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Methods for decreasing the number of objective evaluations for independent computationally expensive objective problems\",\"authors\":\"Gregory Rohling\",\"doi\":\"10.1109/CEC.2008.4631245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, three new methods for pushing solutions toward a desired region of the objective space more quickly are explored; hypercube distance scaling, dynamic objective thresholding, and hypercube distance objective ordering. These methods are applicable for problems that do not require the entire Pareto front and that require an independent computationally expensive computation for each objective. The performance of these methods is evaluated with the multiple objective 0/1 knapsack problem.\",\"PeriodicalId\":328803,\"journal\":{\"name\":\"2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2008.4631245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2008.4631245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文探索了三种将解更快地推向目标空间的期望区域的新方法;超立方体距离缩放,动态目标阈值,和超立方体距离目标排序。这些方法适用于不需要整个帕累托前沿和需要对每个目标进行独立计算的昂贵计算的问题。通过多目标0/1背包问题对这些方法的性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Methods for decreasing the number of objective evaluations for independent computationally expensive objective problems
In this paper, three new methods for pushing solutions toward a desired region of the objective space more quickly are explored; hypercube distance scaling, dynamic objective thresholding, and hypercube distance objective ordering. These methods are applicable for problems that do not require the entire Pareto front and that require an independent computationally expensive computation for each objective. The performance of these methods is evaluated with the multiple objective 0/1 knapsack problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信