{"title":"减少独立计算量大的客观问题的客观评价次数的方法","authors":"Gregory Rohling","doi":"10.1109/CEC.2008.4631245","DOIUrl":null,"url":null,"abstract":"In this paper, three new methods for pushing solutions toward a desired region of the objective space more quickly are explored; hypercube distance scaling, dynamic objective thresholding, and hypercube distance objective ordering. These methods are applicable for problems that do not require the entire Pareto front and that require an independent computationally expensive computation for each objective. The performance of these methods is evaluated with the multiple objective 0/1 knapsack problem.","PeriodicalId":328803,"journal":{"name":"2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Methods for decreasing the number of objective evaluations for independent computationally expensive objective problems\",\"authors\":\"Gregory Rohling\",\"doi\":\"10.1109/CEC.2008.4631245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, three new methods for pushing solutions toward a desired region of the objective space more quickly are explored; hypercube distance scaling, dynamic objective thresholding, and hypercube distance objective ordering. These methods are applicable for problems that do not require the entire Pareto front and that require an independent computationally expensive computation for each objective. The performance of these methods is evaluated with the multiple objective 0/1 knapsack problem.\",\"PeriodicalId\":328803,\"journal\":{\"name\":\"2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2008.4631245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2008.4631245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Methods for decreasing the number of objective evaluations for independent computationally expensive objective problems
In this paper, three new methods for pushing solutions toward a desired region of the objective space more quickly are explored; hypercube distance scaling, dynamic objective thresholding, and hypercube distance objective ordering. These methods are applicable for problems that do not require the entire Pareto front and that require an independent computationally expensive computation for each objective. The performance of these methods is evaluated with the multiple objective 0/1 knapsack problem.