{"title":"从校准的x射线图像中自动提取股骨近端轮廓:贝叶斯推理方法","authors":"Xiao Dong, Guoyan Zheng","doi":"10.1504/IJFIPM.2009.027594","DOIUrl":null,"url":null,"abstract":"Automatic identification and extraction of bone contours from X-ray images is an essential first step task for further medical image analysis. This paper proposed a 3D-statistical-model-based framework for the proximal femur bone contour extraction from calibrated X-ray images. The initialisation to align the statistical model is solved by a particle filter on a dynamic Bayesian network to fit a multiple component geometrical model to the X-ray images. The contour extraction is accomplished by a non-rigid 2D?3D registration between the X-ray images and the statistical model, in which bone contours are extracted by a graphical-model-based Bayesian inference. Experiments on clinical data set verified its robustness against occlusion.","PeriodicalId":216126,"journal":{"name":"Int. J. Funct. Informatics Pers. Medicine","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic extraction of proximal femur contours from calibrated X-ray images: a Bayesian inference approach\",\"authors\":\"Xiao Dong, Guoyan Zheng\",\"doi\":\"10.1504/IJFIPM.2009.027594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic identification and extraction of bone contours from X-ray images is an essential first step task for further medical image analysis. This paper proposed a 3D-statistical-model-based framework for the proximal femur bone contour extraction from calibrated X-ray images. The initialisation to align the statistical model is solved by a particle filter on a dynamic Bayesian network to fit a multiple component geometrical model to the X-ray images. The contour extraction is accomplished by a non-rigid 2D?3D registration between the X-ray images and the statistical model, in which bone contours are extracted by a graphical-model-based Bayesian inference. Experiments on clinical data set verified its robustness against occlusion.\",\"PeriodicalId\":216126,\"journal\":{\"name\":\"Int. J. Funct. Informatics Pers. Medicine\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Funct. Informatics Pers. Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJFIPM.2009.027594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Funct. Informatics Pers. Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJFIPM.2009.027594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic extraction of proximal femur contours from calibrated X-ray images: a Bayesian inference approach
Automatic identification and extraction of bone contours from X-ray images is an essential first step task for further medical image analysis. This paper proposed a 3D-statistical-model-based framework for the proximal femur bone contour extraction from calibrated X-ray images. The initialisation to align the statistical model is solved by a particle filter on a dynamic Bayesian network to fit a multiple component geometrical model to the X-ray images. The contour extraction is accomplished by a non-rigid 2D?3D registration between the X-ray images and the statistical model, in which bone contours are extracted by a graphical-model-based Bayesian inference. Experiments on clinical data set verified its robustness against occlusion.