利用主动学习优化基于雷达的网格地图标注

Timo Winterling, Jakob Lombacher, Markus Hahn, J. Dickmann, C. Wöhler
{"title":"利用主动学习优化基于雷达的网格地图标注","authors":"Timo Winterling, Jakob Lombacher, Markus Hahn, J. Dickmann, C. Wöhler","doi":"10.23919/IRS.2017.8008123","DOIUrl":null,"url":null,"abstract":"The aim of this work is to optimize labelling on radar-based grid maps. Therefore, we suggest an active learning system where only the most valuable samples in the training set are to be labelled manually. We show that this approach drastically reduces the overall time needed for labelling. Using only about 40% of the samples in the training set yet still leading to the same classification results as the completely supervised reference experiment, the proposed approach is suited for optimized dataset creation in the given data domain.","PeriodicalId":430241,"journal":{"name":"2017 18th International Radar Symposium (IRS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimizing labelling on radar-based grid maps using active learning\",\"authors\":\"Timo Winterling, Jakob Lombacher, Markus Hahn, J. Dickmann, C. Wöhler\",\"doi\":\"10.23919/IRS.2017.8008123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work is to optimize labelling on radar-based grid maps. Therefore, we suggest an active learning system where only the most valuable samples in the training set are to be labelled manually. We show that this approach drastically reduces the overall time needed for labelling. Using only about 40% of the samples in the training set yet still leading to the same classification results as the completely supervised reference experiment, the proposed approach is suited for optimized dataset creation in the given data domain.\",\"PeriodicalId\":430241,\"journal\":{\"name\":\"2017 18th International Radar Symposium (IRS)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 18th International Radar Symposium (IRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/IRS.2017.8008123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Radar Symposium (IRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IRS.2017.8008123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

这项工作的目的是优化基于雷达网格地图的标记。因此,我们建议一个主动学习系统,其中只有训练集中最有价值的样本需要手动标记。我们表明,这种方法大大减少了标签所需的总体时间。该方法仅使用训练集中约40%的样本,但仍能获得与完全监督参考实验相同的分类结果,适用于给定数据域的优化数据集创建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing labelling on radar-based grid maps using active learning
The aim of this work is to optimize labelling on radar-based grid maps. Therefore, we suggest an active learning system where only the most valuable samples in the training set are to be labelled manually. We show that this approach drastically reduces the overall time needed for labelling. Using only about 40% of the samples in the training set yet still leading to the same classification results as the completely supervised reference experiment, the proposed approach is suited for optimized dataset creation in the given data domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信