{"title":"Chitchat:在设备到设备的上下文共享中导航权衡","authors":"Samuel Sungmin Cho, C. Julien","doi":"10.1109/PERCOM.2016.7456512","DOIUrl":null,"url":null,"abstract":"Acquiring local context information and sharing it among co-located devices is critical for emerging pervasive computing applications. The devices belonging to a group of co-located people may need to detect a shared activity (e.g., a meeting) to adapt their devices to support the activity. Today's devices are almost universally equipped with device-to-device communication that easily enables direct context sharing. While existing context sharing models tend not to consider devices' resource limitations or users' constraints, enabling devices to directly share context has significant benefits for efficiency, cost, and privacy. However, as we demonstrate quantitatively, when devices share context via device-to-device communication, it needs to be represented in a size-efficient way that does not sacrifice its expressiveness or accuracy. We present CHITCHAT, a suite of context representations that allows application developers to tune tradeoffs between the size of the representation, the flexibility of the application to update context information, the energy required to create and share context, and the quality of the information shared. We can substantially reduce the size of context representation (thereby reducing applications' overheads when they share their contexts with one another) with only a minimal reduction in the quality of shared contexts.","PeriodicalId":275797,"journal":{"name":"2016 IEEE International Conference on Pervasive Computing and Communications (PerCom)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Chitchat: Navigating tradeoffs in device-to-device context sharing\",\"authors\":\"Samuel Sungmin Cho, C. Julien\",\"doi\":\"10.1109/PERCOM.2016.7456512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acquiring local context information and sharing it among co-located devices is critical for emerging pervasive computing applications. The devices belonging to a group of co-located people may need to detect a shared activity (e.g., a meeting) to adapt their devices to support the activity. Today's devices are almost universally equipped with device-to-device communication that easily enables direct context sharing. While existing context sharing models tend not to consider devices' resource limitations or users' constraints, enabling devices to directly share context has significant benefits for efficiency, cost, and privacy. However, as we demonstrate quantitatively, when devices share context via device-to-device communication, it needs to be represented in a size-efficient way that does not sacrifice its expressiveness or accuracy. We present CHITCHAT, a suite of context representations that allows application developers to tune tradeoffs between the size of the representation, the flexibility of the application to update context information, the energy required to create and share context, and the quality of the information shared. We can substantially reduce the size of context representation (thereby reducing applications' overheads when they share their contexts with one another) with only a minimal reduction in the quality of shared contexts.\",\"PeriodicalId\":275797,\"journal\":{\"name\":\"2016 IEEE International Conference on Pervasive Computing and Communications (PerCom)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Pervasive Computing and Communications (PerCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PERCOM.2016.7456512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Pervasive Computing and Communications (PerCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOM.2016.7456512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chitchat: Navigating tradeoffs in device-to-device context sharing
Acquiring local context information and sharing it among co-located devices is critical for emerging pervasive computing applications. The devices belonging to a group of co-located people may need to detect a shared activity (e.g., a meeting) to adapt their devices to support the activity. Today's devices are almost universally equipped with device-to-device communication that easily enables direct context sharing. While existing context sharing models tend not to consider devices' resource limitations or users' constraints, enabling devices to directly share context has significant benefits for efficiency, cost, and privacy. However, as we demonstrate quantitatively, when devices share context via device-to-device communication, it needs to be represented in a size-efficient way that does not sacrifice its expressiveness or accuracy. We present CHITCHAT, a suite of context representations that allows application developers to tune tradeoffs between the size of the representation, the flexibility of the application to update context information, the energy required to create and share context, and the quality of the information shared. We can substantially reduce the size of context representation (thereby reducing applications' overheads when they share their contexts with one another) with only a minimal reduction in the quality of shared contexts.