门格尔定理的形式化方法

Roberta Bonacina, Daniel Misselbeck-Wessel
{"title":"门格尔定理的形式化方法","authors":"Roberta Bonacina, Daniel Misselbeck-Wessel","doi":"10.4467/20842589rm.22.003.16660","DOIUrl":null,"url":null,"abstract":"Menger's graph theorem equates the minimum size of a separating set for non-adjacent vertices a and b with the maximum number of disjoint paths between a and b. By capturing separating sets as models of an entailment relation, we take a formal approach to Menger's result. Upon showing that inconsistency is characterised by the existence of suficiently many disjoint paths, we recover Menger's theorem by way of completeness.","PeriodicalId":447333,"journal":{"name":"Reports Math. Log.","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A formal approach to Menger's theorem\",\"authors\":\"Roberta Bonacina, Daniel Misselbeck-Wessel\",\"doi\":\"10.4467/20842589rm.22.003.16660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Menger's graph theorem equates the minimum size of a separating set for non-adjacent vertices a and b with the maximum number of disjoint paths between a and b. By capturing separating sets as models of an entailment relation, we take a formal approach to Menger's result. Upon showing that inconsistency is characterised by the existence of suficiently many disjoint paths, we recover Menger's theorem by way of completeness.\",\"PeriodicalId\":447333,\"journal\":{\"name\":\"Reports Math. Log.\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports Math. Log.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4467/20842589rm.22.003.16660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports Math. Log.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4467/20842589rm.22.003.16660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

门格尔图定理将非相邻顶点a和b的分离集的最小大小等同于a和b之间不相交路径的最大数量。通过捕获分离集作为蕴涵关系的模型,我们采用了门格尔结果的形式化方法。在证明不一致性是以存在足够多的不相交路径为特征的基础上,我们用完备性的方法恢复了门格尔定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A formal approach to Menger's theorem
Menger's graph theorem equates the minimum size of a separating set for non-adjacent vertices a and b with the maximum number of disjoint paths between a and b. By capturing separating sets as models of an entailment relation, we take a formal approach to Menger's result. Upon showing that inconsistency is characterised by the existence of suficiently many disjoint paths, we recover Menger's theorem by way of completeness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信