拓扑空间中的弱链分离集

N. Shekutkovski, Z. Misajleski, Aneta Velkoska, Emin Durmishi
{"title":"拓扑空间中的弱链分离集","authors":"N. Shekutkovski, Z. Misajleski, Aneta Velkoska, Emin Durmishi","doi":"10.20948/mathmontis-2021-52-1","DOIUrl":null,"url":null,"abstract":"In this paper we introduce the notion of pair of weakly chain separated sets in a topological space. If two sets are chain separated in the topological space, then they are weakly chain separated in the same space. We give an example of weakly chain separated sets in a topological space that are not chain separated in the space. Then we study the properties of these sets. Also we mention the criteria for two kind of topological spaces by using the notion of chain. The topological space is totally separated if and only if any two different singletons (unit subsets) are weakly chain separated in the space, and it is the discrete if and only if any pair of different nonempty subsets are chain separated. Moreover we give a criterion for chain connected set in a topological space by using the notion of weakly chain separateness. This criterion seems to be better than the criterion of chain connectedness by using the notion of pair of chain separated sets. Then we prove the properties of chain connected, and as a consequence of connected sets in a topological space by using the notion of weakly chain separateness.","PeriodicalId":170315,"journal":{"name":"Mathematica Montisnigri","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weakly chain separated sets in a topological space\",\"authors\":\"N. Shekutkovski, Z. Misajleski, Aneta Velkoska, Emin Durmishi\",\"doi\":\"10.20948/mathmontis-2021-52-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce the notion of pair of weakly chain separated sets in a topological space. If two sets are chain separated in the topological space, then they are weakly chain separated in the same space. We give an example of weakly chain separated sets in a topological space that are not chain separated in the space. Then we study the properties of these sets. Also we mention the criteria for two kind of topological spaces by using the notion of chain. The topological space is totally separated if and only if any two different singletons (unit subsets) are weakly chain separated in the space, and it is the discrete if and only if any pair of different nonempty subsets are chain separated. Moreover we give a criterion for chain connected set in a topological space by using the notion of weakly chain separateness. This criterion seems to be better than the criterion of chain connectedness by using the notion of pair of chain separated sets. Then we prove the properties of chain connected, and as a consequence of connected sets in a topological space by using the notion of weakly chain separateness.\",\"PeriodicalId\":170315,\"journal\":{\"name\":\"Mathematica Montisnigri\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Montisnigri\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20948/mathmontis-2021-52-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Montisnigri","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20948/mathmontis-2021-52-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在拓扑空间中引入了弱链分离集对的概念。如果两个集合在拓扑空间中是链分离的,则它们在同一空间中是弱链分离的。给出了拓扑空间中非链分离的弱链分离集的一个例子。然后我们研究了这些集合的性质。并利用链的概念给出了两类拓扑空间的判据。拓扑空间是完全分离的当且仅当空间中任意两个不同的单子(单位子集)是弱链分离的,当且仅当任意一对不同的非空子集是链分离的,拓扑空间是离散的。利用弱链分离的概念,给出了拓扑空间中链连通集的一个判据。利用链分离集对的概念,该准则似乎优于链连通性准则。然后利用弱链分离的概念,证明了拓扑空间中链连通集的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weakly chain separated sets in a topological space
In this paper we introduce the notion of pair of weakly chain separated sets in a topological space. If two sets are chain separated in the topological space, then they are weakly chain separated in the same space. We give an example of weakly chain separated sets in a topological space that are not chain separated in the space. Then we study the properties of these sets. Also we mention the criteria for two kind of topological spaces by using the notion of chain. The topological space is totally separated if and only if any two different singletons (unit subsets) are weakly chain separated in the space, and it is the discrete if and only if any pair of different nonempty subsets are chain separated. Moreover we give a criterion for chain connected set in a topological space by using the notion of weakly chain separateness. This criterion seems to be better than the criterion of chain connectedness by using the notion of pair of chain separated sets. Then we prove the properties of chain connected, and as a consequence of connected sets in a topological space by using the notion of weakly chain separateness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信