用于手写数字识别的受限玻尔兹曼机的结构与实现

Nikolaos Toulgaridis, E. Bougioukou, T. Antonakopoulos
{"title":"用于手写数字识别的受限玻尔兹曼机的结构与实现","authors":"Nikolaos Toulgaridis, E. Bougioukou, T. Antonakopoulos","doi":"10.1109/MOCAST.2017.7937689","DOIUrl":null,"url":null,"abstract":"Restricted Boltzmann Machines are artificial neural networks used in many types of statistical classification. In this work we present the architecture and implementation of such a neural network for fast recognition of hand-written digits. We use fixed and floating point arithmetic for minimizing the required hardware resources, and the use of pipeline results to a processing rate of more than 1 Mimages/sec per RBM. Four neural networks have been used on a PCIe-based hardware accelerator that uses a Virtex-7 FPGA, and that results to a total processing rate of more than 4 Mimages/sec.","PeriodicalId":202381,"journal":{"name":"2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Architecture and implementation of a Restricted Boltzmann Machine for handwritten digits recognition\",\"authors\":\"Nikolaos Toulgaridis, E. Bougioukou, T. Antonakopoulos\",\"doi\":\"10.1109/MOCAST.2017.7937689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Restricted Boltzmann Machines are artificial neural networks used in many types of statistical classification. In this work we present the architecture and implementation of such a neural network for fast recognition of hand-written digits. We use fixed and floating point arithmetic for minimizing the required hardware resources, and the use of pipeline results to a processing rate of more than 1 Mimages/sec per RBM. Four neural networks have been used on a PCIe-based hardware accelerator that uses a Virtex-7 FPGA, and that results to a total processing rate of more than 4 Mimages/sec.\",\"PeriodicalId\":202381,\"journal\":{\"name\":\"2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MOCAST.2017.7937689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MOCAST.2017.7937689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

受限玻尔兹曼机是用于多种统计分类的人工神经网络。在这项工作中,我们提出了这种快速识别手写数字的神经网络的架构和实现。我们使用固定和浮点算法来最小化所需的硬件资源,并且使用流水线导致每个RBM的处理速率超过1 m /秒。在使用Virtex-7 FPGA的基于pcie的硬件加速器上使用了四个神经网络,其结果是总处理速率超过4 m /秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Architecture and implementation of a Restricted Boltzmann Machine for handwritten digits recognition
Restricted Boltzmann Machines are artificial neural networks used in many types of statistical classification. In this work we present the architecture and implementation of such a neural network for fast recognition of hand-written digits. We use fixed and floating point arithmetic for minimizing the required hardware resources, and the use of pipeline results to a processing rate of more than 1 Mimages/sec per RBM. Four neural networks have been used on a PCIe-based hardware accelerator that uses a Virtex-7 FPGA, and that results to a total processing rate of more than 4 Mimages/sec.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信