遮挡面部表情的动作单元重建

Chung-Hsien Wu, Jen-Chun Lin, Wen-Li Wei
{"title":"遮挡面部表情的动作单元重建","authors":"Chung-Hsien Wu, Jen-Chun Lin, Wen-Li Wei","doi":"10.1109/ICOT.2014.6956628","DOIUrl":null,"url":null,"abstract":"Facial occlusion is a critical issue that may dramatically degrade the performance on facial expression-based emotion recognition. In this study, the Error Weighted Cross-Correlation Model (EWCCM) is employed to predict the facial Action Unit (AU) under partial facial occlusion from non-occluded facial regions for facial geometric feature reconstruction. In EWCCM, a Gaussian Mixture Model (GMM)-based Cross-Correlation Model (CCM) is first adopted to construct the statistical dependency among features from paired facial components such as eyebrows-cheeks of the non-occluded regions for AU prediction of the occluded region. A Bayesian classifier weighting scheme is then used to enhance the AU prediction accuracy considering the contributions of the GMM-based CCMs. Based on the predicted AU, a regression fusion scheme is proposed to reconstruct the occluded facial geometric features. Experimental results show that the proposed approach yielded satisfactory results on the NCKU-FEPO database for facial AU reconstruction.","PeriodicalId":343641,"journal":{"name":"2014 International Conference on Orange Technologies","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Action unit reconstruction of occluded facial expression\",\"authors\":\"Chung-Hsien Wu, Jen-Chun Lin, Wen-Li Wei\",\"doi\":\"10.1109/ICOT.2014.6956628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial occlusion is a critical issue that may dramatically degrade the performance on facial expression-based emotion recognition. In this study, the Error Weighted Cross-Correlation Model (EWCCM) is employed to predict the facial Action Unit (AU) under partial facial occlusion from non-occluded facial regions for facial geometric feature reconstruction. In EWCCM, a Gaussian Mixture Model (GMM)-based Cross-Correlation Model (CCM) is first adopted to construct the statistical dependency among features from paired facial components such as eyebrows-cheeks of the non-occluded regions for AU prediction of the occluded region. A Bayesian classifier weighting scheme is then used to enhance the AU prediction accuracy considering the contributions of the GMM-based CCMs. Based on the predicted AU, a regression fusion scheme is proposed to reconstruct the occluded facial geometric features. Experimental results show that the proposed approach yielded satisfactory results on the NCKU-FEPO database for facial AU reconstruction.\",\"PeriodicalId\":343641,\"journal\":{\"name\":\"2014 International Conference on Orange Technologies\",\"volume\":\"199 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Orange Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOT.2014.6956628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Orange Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOT.2014.6956628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

面部遮挡是基于面部表情的情感识别的一个关键问题,它可能会极大地降低识别性能。本研究采用误差加权互相关模型(Error Weighted Cross-Correlation Model, EWCCM)从非遮挡的面部区域预测部分遮挡下的面部动作单元(facial Action Unit, AU),用于面部几何特征重建。在EWCCM中,首先采用基于高斯混合模型(Gaussian Mixture Model, GMM)的交叉相关模型(Cross-Correlation Model, CCM),从未遮挡区域的配对面部成分(如眉毛-脸颊)中构建特征之间的统计依赖关系,用于遮挡区域的AU预测。然后,考虑到基于gmm的ccm的贡献,采用贝叶斯分类器加权方案来提高AU预测精度。基于预测的AU,提出了一种回归融合方案来重建被遮挡的人脸几何特征。实验结果表明,该方法在NCKU-FEPO数据库上取得了满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Action unit reconstruction of occluded facial expression
Facial occlusion is a critical issue that may dramatically degrade the performance on facial expression-based emotion recognition. In this study, the Error Weighted Cross-Correlation Model (EWCCM) is employed to predict the facial Action Unit (AU) under partial facial occlusion from non-occluded facial regions for facial geometric feature reconstruction. In EWCCM, a Gaussian Mixture Model (GMM)-based Cross-Correlation Model (CCM) is first adopted to construct the statistical dependency among features from paired facial components such as eyebrows-cheeks of the non-occluded regions for AU prediction of the occluded region. A Bayesian classifier weighting scheme is then used to enhance the AU prediction accuracy considering the contributions of the GMM-based CCMs. Based on the predicted AU, a regression fusion scheme is proposed to reconstruct the occluded facial geometric features. Experimental results show that the proposed approach yielded satisfactory results on the NCKU-FEPO database for facial AU reconstruction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信