全词递归神经网络关键字识别

K. Li, J. Naylor, M. L. Rossen
{"title":"全词递归神经网络关键字识别","authors":"K. Li, J. Naylor, M. L. Rossen","doi":"10.1109/ICASSP.1992.226115","DOIUrl":null,"url":null,"abstract":"The authors present a neural network which is trained on word examples to perform the wordspotting task. This network has multiple recurrent connections with time delay to account for temporal dynamics. A single network may be trained to recognize one word or many words. A hybrid wordspotter is evaluated in which a conventional wordspotter (based on dynamic time warping word matching) is used to screen incoming speech for potential keywords which are then passed to the network for the final accept/reject decision. Initial tests on a standard wordspotting test corpora resulted in improved keyword recognition at false alarm rates above zero.<<ETX>>","PeriodicalId":163713,"journal":{"name":"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"A whole word recurrent neural network for keyword spotting\",\"authors\":\"K. Li, J. Naylor, M. L. Rossen\",\"doi\":\"10.1109/ICASSP.1992.226115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors present a neural network which is trained on word examples to perform the wordspotting task. This network has multiple recurrent connections with time delay to account for temporal dynamics. A single network may be trained to recognize one word or many words. A hybrid wordspotter is evaluated in which a conventional wordspotter (based on dynamic time warping word matching) is used to screen incoming speech for potential keywords which are then passed to the network for the final accept/reject decision. Initial tests on a standard wordspotting test corpora resulted in improved keyword recognition at false alarm rates above zero.<<ETX>>\",\"PeriodicalId\":163713,\"journal\":{\"name\":\"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1992.226115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1992.226115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

本文提出了一种基于单词样本训练的神经网络来完成单词识别任务。该网络具有多个具有时间延迟的循环连接,以解释时间动态。单个网络可以被训练来识别一个单词或多个单词。本文评估了一种混合词点器,其中使用传统词点器(基于动态时间扭曲词匹配)来筛选输入语音中的潜在关键字,然后将这些关键字传递给网络以做出最终的接受/拒绝决定。在标准单词识别测试语料库上进行的初步测试结果表明,在误报率高于零的情况下,关键字识别得到了改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A whole word recurrent neural network for keyword spotting
The authors present a neural network which is trained on word examples to perform the wordspotting task. This network has multiple recurrent connections with time delay to account for temporal dynamics. A single network may be trained to recognize one word or many words. A hybrid wordspotter is evaluated in which a conventional wordspotter (based on dynamic time warping word matching) is used to screen incoming speech for potential keywords which are then passed to the network for the final accept/reject decision. Initial tests on a standard wordspotting test corpora resulted in improved keyword recognition at false alarm rates above zero.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信