Raquel Priscila Ibiapino, Anderson Rodrigues de Sousa, Antonio José Boness dos Santos
{"title":"用变分法分析弹性基梁","authors":"Raquel Priscila Ibiapino, Anderson Rodrigues de Sousa, Antonio José Boness dos Santos","doi":"10.29327/154013.24-10","DOIUrl":null,"url":null,"abstract":"O estudo de vigas é um dos principais problemas investigados na Engenharia Civil, sendo estas estruturas regidas por equações diferenciais. Este artigo busca identificar soluções numéricas da equação de equilíbrio de vigas sobre base elástica, utilizando o Método dos Elementos Finitos e aplicando os métodos variacionais, a saber, Colocação, Sub-regiões e Método dos Mínimos Quadrados, visando comparar os resultados obtidos através de experimentações numéricas e a solução analítica, para identificar o método variacional que fornece a melhor solução aproximada, condizente com a solução analítica. Trata-se de uma revisão bibliográfica, com abordagem descritiva e realização de simulações numéricas utilizando a linguagem de programação, Phyton. Comparamos as soluções do problema modelo para dois casos diferentes, utilizando os métodos citados anteriormente, constatando que no 1° caso, os Métodos das Sub-regiões e Colocação fornecem a melhor aproximação para os deslocamentos verticais, com uma função base polinomial, enquanto no 2° caso a função trigonométrica fornece uma melhor aproximação, apresentando variações significativas em relação ao 1° caso, devido às mudanças nos parâmetros, coeficiente de mola (K), módulo de elasticidade longitudinal (E) e inércia da seção transversal (I).","PeriodicalId":204205,"journal":{"name":"Anais do(a) Encontro nacional de modelagem computacional e encontro de ciência e tecnologia de materiais","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANÁLISE DE VIGAS SOBRE BASE ELÁSTICA VIA MÉTODOS VARIACIONAIS\",\"authors\":\"Raquel Priscila Ibiapino, Anderson Rodrigues de Sousa, Antonio José Boness dos Santos\",\"doi\":\"10.29327/154013.24-10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"O estudo de vigas é um dos principais problemas investigados na Engenharia Civil, sendo estas estruturas regidas por equações diferenciais. Este artigo busca identificar soluções numéricas da equação de equilíbrio de vigas sobre base elástica, utilizando o Método dos Elementos Finitos e aplicando os métodos variacionais, a saber, Colocação, Sub-regiões e Método dos Mínimos Quadrados, visando comparar os resultados obtidos através de experimentações numéricas e a solução analítica, para identificar o método variacional que fornece a melhor solução aproximada, condizente com a solução analítica. Trata-se de uma revisão bibliográfica, com abordagem descritiva e realização de simulações numéricas utilizando a linguagem de programação, Phyton. Comparamos as soluções do problema modelo para dois casos diferentes, utilizando os métodos citados anteriormente, constatando que no 1° caso, os Métodos das Sub-regiões e Colocação fornecem a melhor aproximação para os deslocamentos verticais, com uma função base polinomial, enquanto no 2° caso a função trigonométrica fornece uma melhor aproximação, apresentando variações significativas em relação ao 1° caso, devido às mudanças nos parâmetros, coeficiente de mola (K), módulo de elasticidade longitudinal (E) e inércia da seção transversal (I).\",\"PeriodicalId\":204205,\"journal\":{\"name\":\"Anais do(a) Encontro nacional de modelagem computacional e encontro de ciência e tecnologia de materiais\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do(a) Encontro nacional de modelagem computacional e encontro de ciência e tecnologia de materiais\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29327/154013.24-10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do(a) Encontro nacional de modelagem computacional e encontro de ciência e tecnologia de materiais","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29327/154013.24-10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ANÁLISE DE VIGAS SOBRE BASE ELÁSTICA VIA MÉTODOS VARIACIONAIS
O estudo de vigas é um dos principais problemas investigados na Engenharia Civil, sendo estas estruturas regidas por equações diferenciais. Este artigo busca identificar soluções numéricas da equação de equilíbrio de vigas sobre base elástica, utilizando o Método dos Elementos Finitos e aplicando os métodos variacionais, a saber, Colocação, Sub-regiões e Método dos Mínimos Quadrados, visando comparar os resultados obtidos através de experimentações numéricas e a solução analítica, para identificar o método variacional que fornece a melhor solução aproximada, condizente com a solução analítica. Trata-se de uma revisão bibliográfica, com abordagem descritiva e realização de simulações numéricas utilizando a linguagem de programação, Phyton. Comparamos as soluções do problema modelo para dois casos diferentes, utilizando os métodos citados anteriormente, constatando que no 1° caso, os Métodos das Sub-regiões e Colocação fornecem a melhor aproximação para os deslocamentos verticais, com uma função base polinomial, enquanto no 2° caso a função trigonométrica fornece uma melhor aproximação, apresentando variações significativas em relação ao 1° caso, devido às mudanças nos parâmetros, coeficiente de mola (K), módulo de elasticidade longitudinal (E) e inércia da seção transversal (I).