张量投票技术在灰度图像感知分组中的应用:定量评价

A. Massad, Martin Bab, Biirbel Mertsching
{"title":"张量投票技术在灰度图像感知分组中的应用:定量评价","authors":"A. Massad, Martin Bab, Biirbel Mertsching","doi":"10.1109/ISPA.2003.1296949","DOIUrl":null,"url":null,"abstract":"This paper presents a quantitative evaluation of the application of the perceptual grouping method known as tensor voting to grey-level images. For that purpose, we have introduced the use of local orientation tensors computed from a set of Gabor filters. While inputs formerly consisted of binary images or sparse edgel maps, we use oriented input tokens and the locations of junctions from images as input to the perceptual grouping. Here, we introduce a benchmark test to estimate the precision of our method with regards to angular and positional error. Results on these test images show that the computation of the tensorial input tokens is highly precise and robust against noise. Both aspects arc further improved by the subsequent grouping process.","PeriodicalId":218932,"journal":{"name":"3rd International Symposium on Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings of the","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Application of the tensor voting technique for perceptual grouping to grey-level images: quantitative evaluation\",\"authors\":\"A. Massad, Martin Bab, Biirbel Mertsching\",\"doi\":\"10.1109/ISPA.2003.1296949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a quantitative evaluation of the application of the perceptual grouping method known as tensor voting to grey-level images. For that purpose, we have introduced the use of local orientation tensors computed from a set of Gabor filters. While inputs formerly consisted of binary images or sparse edgel maps, we use oriented input tokens and the locations of junctions from images as input to the perceptual grouping. Here, we introduce a benchmark test to estimate the precision of our method with regards to angular and positional error. Results on these test images show that the computation of the tensorial input tokens is highly precise and robust against noise. Both aspects arc further improved by the subsequent grouping process.\",\"PeriodicalId\":218932,\"journal\":{\"name\":\"3rd International Symposium on Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings of the\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3rd International Symposium on Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings of the\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPA.2003.1296949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3rd International Symposium on Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings of the","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2003.1296949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一个定量评价的应用知觉分组方法被称为张量投票灰度级图像。为此,我们介绍了从一组Gabor滤波器计算的局部方向张量的使用。虽然以前的输入由二值图像或稀疏边缘映射组成,但我们使用定向输入标记和来自图像的连接位置作为感知分组的输入。在这里,我们引入了一个基准测试来估计我们的方法在角度和位置误差方面的精度。对这些测试图像的结果表明,张量输入令牌的计算精度很高,对噪声具有很强的鲁棒性。随后的分组过程进一步改进了这两个方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of the tensor voting technique for perceptual grouping to grey-level images: quantitative evaluation
This paper presents a quantitative evaluation of the application of the perceptual grouping method known as tensor voting to grey-level images. For that purpose, we have introduced the use of local orientation tensors computed from a set of Gabor filters. While inputs formerly consisted of binary images or sparse edgel maps, we use oriented input tokens and the locations of junctions from images as input to the perceptual grouping. Here, we introduce a benchmark test to estimate the precision of our method with regards to angular and positional error. Results on these test images show that the computation of the tensorial input tokens is highly precise and robust against noise. Both aspects arc further improved by the subsequent grouping process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信