局部主成分分析过完备方法在DW图像去噪中的GPU并行实现

S. Cuomo, P. D. Michele, A. Galletti, L. Marcellino
{"title":"局部主成分分析过完备方法在DW图像去噪中的GPU并行实现","authors":"S. Cuomo, P. D. Michele, A. Galletti, L. Marcellino","doi":"10.1109/ISCC.2016.7543709","DOIUrl":null,"url":null,"abstract":"We focus on the Overcomplete Local Principal Component Analysis (OLPCA) method, which is widely adopted as denoising filter. We propose a programming approach resorting to Graphic Processor Units (GPUs), in order to massively parallelize some heavy computational tasks of the method. In our approach, we design and implement a parallel version of the OLPCA, by using a suitable mapping of the tasks on a GPU architecture with the aim to investigate the performance and the denoising features of the algorithm. The experimental results show improvements in terms of GFlops and memory throughput.","PeriodicalId":148096,"journal":{"name":"2016 IEEE Symposium on Computers and Communication (ISCC)","volume":"315 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A GPU parallel implementation of the Local Principal Component Analysis overcomplete method for DW image denoising\",\"authors\":\"S. Cuomo, P. D. Michele, A. Galletti, L. Marcellino\",\"doi\":\"10.1109/ISCC.2016.7543709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We focus on the Overcomplete Local Principal Component Analysis (OLPCA) method, which is widely adopted as denoising filter. We propose a programming approach resorting to Graphic Processor Units (GPUs), in order to massively parallelize some heavy computational tasks of the method. In our approach, we design and implement a parallel version of the OLPCA, by using a suitable mapping of the tasks on a GPU architecture with the aim to investigate the performance and the denoising features of the algorithm. The experimental results show improvements in terms of GFlops and memory throughput.\",\"PeriodicalId\":148096,\"journal\":{\"name\":\"2016 IEEE Symposium on Computers and Communication (ISCC)\",\"volume\":\"315 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Symposium on Computers and Communication (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC.2016.7543709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium on Computers and Communication (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC.2016.7543709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

本文重点研究了目前广泛应用的局部主成分分析(OLPCA)方法。我们提出了一种利用图形处理器单元(gpu)的编程方法,以大规模并行化该方法的一些繁重的计算任务。在我们的方法中,我们设计并实现了OLPCA的并行版本,通过在GPU架构上使用适当的任务映射,目的是研究该算法的性能和去噪特征。实验结果表明,在GFlops和内存吞吐量方面有所改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A GPU parallel implementation of the Local Principal Component Analysis overcomplete method for DW image denoising
We focus on the Overcomplete Local Principal Component Analysis (OLPCA) method, which is widely adopted as denoising filter. We propose a programming approach resorting to Graphic Processor Units (GPUs), in order to massively parallelize some heavy computational tasks of the method. In our approach, we design and implement a parallel version of the OLPCA, by using a suitable mapping of the tasks on a GPU architecture with the aim to investigate the performance and the denoising features of the algorithm. The experimental results show improvements in terms of GFlops and memory throughput.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信