S. Cuomo, P. D. Michele, A. Galletti, L. Marcellino
{"title":"局部主成分分析过完备方法在DW图像去噪中的GPU并行实现","authors":"S. Cuomo, P. D. Michele, A. Galletti, L. Marcellino","doi":"10.1109/ISCC.2016.7543709","DOIUrl":null,"url":null,"abstract":"We focus on the Overcomplete Local Principal Component Analysis (OLPCA) method, which is widely adopted as denoising filter. We propose a programming approach resorting to Graphic Processor Units (GPUs), in order to massively parallelize some heavy computational tasks of the method. In our approach, we design and implement a parallel version of the OLPCA, by using a suitable mapping of the tasks on a GPU architecture with the aim to investigate the performance and the denoising features of the algorithm. The experimental results show improvements in terms of GFlops and memory throughput.","PeriodicalId":148096,"journal":{"name":"2016 IEEE Symposium on Computers and Communication (ISCC)","volume":"315 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A GPU parallel implementation of the Local Principal Component Analysis overcomplete method for DW image denoising\",\"authors\":\"S. Cuomo, P. D. Michele, A. Galletti, L. Marcellino\",\"doi\":\"10.1109/ISCC.2016.7543709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We focus on the Overcomplete Local Principal Component Analysis (OLPCA) method, which is widely adopted as denoising filter. We propose a programming approach resorting to Graphic Processor Units (GPUs), in order to massively parallelize some heavy computational tasks of the method. In our approach, we design and implement a parallel version of the OLPCA, by using a suitable mapping of the tasks on a GPU architecture with the aim to investigate the performance and the denoising features of the algorithm. The experimental results show improvements in terms of GFlops and memory throughput.\",\"PeriodicalId\":148096,\"journal\":{\"name\":\"2016 IEEE Symposium on Computers and Communication (ISCC)\",\"volume\":\"315 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Symposium on Computers and Communication (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC.2016.7543709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium on Computers and Communication (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC.2016.7543709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A GPU parallel implementation of the Local Principal Component Analysis overcomplete method for DW image denoising
We focus on the Overcomplete Local Principal Component Analysis (OLPCA) method, which is widely adopted as denoising filter. We propose a programming approach resorting to Graphic Processor Units (GPUs), in order to massively parallelize some heavy computational tasks of the method. In our approach, we design and implement a parallel version of the OLPCA, by using a suitable mapping of the tasks on a GPU architecture with the aim to investigate the performance and the denoising features of the algorithm. The experimental results show improvements in terms of GFlops and memory throughput.