使用节点加法算法对表达式数据进行双聚类

B. Borah, D. Bhattacharyya
{"title":"使用节点加法算法对表达式数据进行双聚类","authors":"B. Borah, D. Bhattacharyya","doi":"10.1109/ADCOM.2007.50","DOIUrl":null,"url":null,"abstract":"Biclustering algorithms simultaneously cluster both rows and columns. This type of algorithms are applied to gene expression data analysis to find a subset of genes that exhibit similar expression pattern under a subset of conditions. Cheng and Church introduced the mean squared residue measure to capture the coherence of a subset of genes over a subset of conditions. They provided a set of heuristic algorithms based primarily on node deletion to find one bicluster or a set of biclusters after masking discovered biclusters with random values. Masking of discovered biclusters with random values interferes with discovery of high quality biclusters. We provide an efficient node addition algorithm to find a set of biclusters without the need of masking discovered biclusters. Initialized with a gene and a subset of conditions, a bicluster is extended by adding more genes and conditions. Thus it provides facility to study individual genes, besides generating a large number of biclusters with different initializations. Biclusters with lower or higher scores within a specified limit can be generated by parameter setting. Use of incremental method of computing score makes the algorithm faster.","PeriodicalId":185608,"journal":{"name":"15th International Conference on Advanced Computing and Communications (ADCOM 2007)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Biclustering Expression Data Using Node Addition Algorithm\",\"authors\":\"B. Borah, D. Bhattacharyya\",\"doi\":\"10.1109/ADCOM.2007.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biclustering algorithms simultaneously cluster both rows and columns. This type of algorithms are applied to gene expression data analysis to find a subset of genes that exhibit similar expression pattern under a subset of conditions. Cheng and Church introduced the mean squared residue measure to capture the coherence of a subset of genes over a subset of conditions. They provided a set of heuristic algorithms based primarily on node deletion to find one bicluster or a set of biclusters after masking discovered biclusters with random values. Masking of discovered biclusters with random values interferes with discovery of high quality biclusters. We provide an efficient node addition algorithm to find a set of biclusters without the need of masking discovered biclusters. Initialized with a gene and a subset of conditions, a bicluster is extended by adding more genes and conditions. Thus it provides facility to study individual genes, besides generating a large number of biclusters with different initializations. Biclusters with lower or higher scores within a specified limit can be generated by parameter setting. Use of incremental method of computing score makes the algorithm faster.\",\"PeriodicalId\":185608,\"journal\":{\"name\":\"15th International Conference on Advanced Computing and Communications (ADCOM 2007)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"15th International Conference on Advanced Computing and Communications (ADCOM 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ADCOM.2007.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th International Conference on Advanced Computing and Communications (ADCOM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ADCOM.2007.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

双聚类算法同时对行和列进行聚类。这种类型的算法被应用于基因表达数据分析,以找到在子集条件下表现出相似表达模式的基因子集。Cheng和Church引入了均方残差测量来捕捉一组基因在一组条件下的一致性。他们提供了一套主要基于节点删除的启发式算法,在屏蔽发现的具有随机值的双聚类后,找到一个或一组双聚类。用随机值掩盖已发现的双聚类会干扰高质量双聚类的发现。我们提供了一种高效的节点加法算法,可以在不屏蔽发现的双聚类的情况下找到一组双聚类。初始化一个基因和条件子集,通过添加更多的基因和条件来扩展双聚类。这样除了生成大量不同初始化的双聚类外,还为研究单个基因提供了便利。可以通过参数设置在指定的限制范围内生成分数较低或较高的双聚类。采用增量计分法,提高了算法的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biclustering Expression Data Using Node Addition Algorithm
Biclustering algorithms simultaneously cluster both rows and columns. This type of algorithms are applied to gene expression data analysis to find a subset of genes that exhibit similar expression pattern under a subset of conditions. Cheng and Church introduced the mean squared residue measure to capture the coherence of a subset of genes over a subset of conditions. They provided a set of heuristic algorithms based primarily on node deletion to find one bicluster or a set of biclusters after masking discovered biclusters with random values. Masking of discovered biclusters with random values interferes with discovery of high quality biclusters. We provide an efficient node addition algorithm to find a set of biclusters without the need of masking discovered biclusters. Initialized with a gene and a subset of conditions, a bicluster is extended by adding more genes and conditions. Thus it provides facility to study individual genes, besides generating a large number of biclusters with different initializations. Biclusters with lower or higher scores within a specified limit can be generated by parameter setting. Use of incremental method of computing score makes the algorithm faster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信