{"title":"纯𝑆𝑈(2)规范理论配分函数与广义贝塞尔核","authors":"P. Gavrylenko, O. Lisovyy","doi":"10.1090/PSPUM/098/01727","DOIUrl":null,"url":null,"abstract":"We show that the dual partition function of the pure $\\mathcal N=2$ $SU(2)$ gauge theory in the self-dual $\\Omega$-background (a) is given by Fredholm determinant of a generalized Bessel kernel and (b) coincides with the tau function associated to the general solution of the Painleve III equation of type $D_8$ (radial sine-Gordon equation). In particular, the principal minor expansion of the Fredholm determinant yields Nekrasov combinatorial sums over pairs of Young diagrams.","PeriodicalId":384712,"journal":{"name":"Proceedings of Symposia in Pure\n Mathematics","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Pure 𝑆𝑈(2) gauge theory partition function\\n and generalized Bessel kernel\",\"authors\":\"P. Gavrylenko, O. Lisovyy\",\"doi\":\"10.1090/PSPUM/098/01727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the dual partition function of the pure $\\\\mathcal N=2$ $SU(2)$ gauge theory in the self-dual $\\\\Omega$-background (a) is given by Fredholm determinant of a generalized Bessel kernel and (b) coincides with the tau function associated to the general solution of the Painleve III equation of type $D_8$ (radial sine-Gordon equation). In particular, the principal minor expansion of the Fredholm determinant yields Nekrasov combinatorial sums over pairs of Young diagrams.\",\"PeriodicalId\":384712,\"journal\":{\"name\":\"Proceedings of Symposia in Pure\\n Mathematics\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Symposia in Pure\\n Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/PSPUM/098/01727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Symposia in Pure\n Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PSPUM/098/01727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pure 𝑆𝑈(2) gauge theory partition function
and generalized Bessel kernel
We show that the dual partition function of the pure $\mathcal N=2$ $SU(2)$ gauge theory in the self-dual $\Omega$-background (a) is given by Fredholm determinant of a generalized Bessel kernel and (b) coincides with the tau function associated to the general solution of the Painleve III equation of type $D_8$ (radial sine-Gordon equation). In particular, the principal minor expansion of the Fredholm determinant yields Nekrasov combinatorial sums over pairs of Young diagrams.