保证错误边界代理建模的框架

Ashfaq Iftakher, Chinmay M. Aras, Mohammed Sadaf Monjur, M. Hasan
{"title":"保证错误边界代理建模的框架","authors":"Ashfaq Iftakher, Chinmay M. Aras, Mohammed Sadaf Monjur, M. Hasan","doi":"10.23919/ACC53348.2022.9867870","DOIUrl":null,"url":null,"abstract":"We present a data-driven surrogate modeling technique to replace computationally expensive high-fidelity models. The proposed technique uses the Hessian information of the original grey-box/black-box model to construct edge-concave underestimators and edge-convex overestimators to provide approximation over the entire domain with guaranteed error-bounds. A surrogate model with prepostulated form is then achieved by performing a parameter estimation that ensures the approximation to be bounded between the vertex polyhedral under- and over-estimators of the original model. We describe a package named GEMS that integrates and automates the required series of tasks, i.e., the location and the number of sample evaluation, estimation of the Hessian bounds, and parameter estimation to obtain the surrogate with guaranteed prediction within the error bounds. As a case study, we demonstrate that the suggested surrogate by GEMS exhibits good performance in predicting the solubility of hydrofluorocarbon (HFC) refrigerants in ionic liquids (IL).","PeriodicalId":366299,"journal":{"name":"2022 American Control Conference (ACC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Framework for Guaranteed Error-bounded Surrogate Modeling\",\"authors\":\"Ashfaq Iftakher, Chinmay M. Aras, Mohammed Sadaf Monjur, M. Hasan\",\"doi\":\"10.23919/ACC53348.2022.9867870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a data-driven surrogate modeling technique to replace computationally expensive high-fidelity models. The proposed technique uses the Hessian information of the original grey-box/black-box model to construct edge-concave underestimators and edge-convex overestimators to provide approximation over the entire domain with guaranteed error-bounds. A surrogate model with prepostulated form is then achieved by performing a parameter estimation that ensures the approximation to be bounded between the vertex polyhedral under- and over-estimators of the original model. We describe a package named GEMS that integrates and automates the required series of tasks, i.e., the location and the number of sample evaluation, estimation of the Hessian bounds, and parameter estimation to obtain the surrogate with guaranteed prediction within the error bounds. As a case study, we demonstrate that the suggested surrogate by GEMS exhibits good performance in predicting the solubility of hydrofluorocarbon (HFC) refrigerants in ionic liquids (IL).\",\"PeriodicalId\":366299,\"journal\":{\"name\":\"2022 American Control Conference (ACC)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC53348.2022.9867870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC53348.2022.9867870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种数据驱动的代理建模技术来取代计算上昂贵的高保真模型。该方法利用原始灰盒/黑盒模型的Hessian信息构造边缘凹过估计器和边缘凸过估计器,在保证误差范围的情况下提供整个域的近似。然后通过执行参数估计来实现具有预设形式的代理模型,该参数估计确保近似在原始模型的顶点多面体欠估计量和过高估计量之间有界。我们描述了一个名为GEMS的包,它集成并自动化了所需的一系列任务,即样本评估的位置和数量、Hessian边界的估计和参数估计,以获得在误差范围内保证预测的代理。作为一个案例研究,我们证明了GEMS建议的替代方法在预测氢氟碳(HFC)制冷剂在离子液体(IL)中的溶解度方面表现出良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Framework for Guaranteed Error-bounded Surrogate Modeling
We present a data-driven surrogate modeling technique to replace computationally expensive high-fidelity models. The proposed technique uses the Hessian information of the original grey-box/black-box model to construct edge-concave underestimators and edge-convex overestimators to provide approximation over the entire domain with guaranteed error-bounds. A surrogate model with prepostulated form is then achieved by performing a parameter estimation that ensures the approximation to be bounded between the vertex polyhedral under- and over-estimators of the original model. We describe a package named GEMS that integrates and automates the required series of tasks, i.e., the location and the number of sample evaluation, estimation of the Hessian bounds, and parameter estimation to obtain the surrogate with guaranteed prediction within the error bounds. As a case study, we demonstrate that the suggested surrogate by GEMS exhibits good performance in predicting the solubility of hydrofluorocarbon (HFC) refrigerants in ionic liquids (IL).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信