{"title":"用DU_LLTD模式模拟印度赤道和低纬度电离层上层电子密度分布","authors":"Rimpy Kakoty, P. K. Bhuyan","doi":"10.23919/URSIAP-RASC.2019.8738607","DOIUrl":null,"url":null,"abstract":"The spatial and temporal distribution of ionospheric electron density in the Indian equatorial and low latitudes during high solar activity conditions is theoretically simulated. The Dibrugarh University Low Latitude Temperature and Density (DU_LLTD) Model, which operates by simultaneously solving the time-dependent equations of continuity, momentum and energy balance equations along the ED (eccentric dipole) geomagnetic field lines (Bhuyan et al., 2001a,b) is used to generate the density profiles at different heights for solar maximum equinoctial condition. The effects of $\\mathrm{E} \\times \\mathrm{B}$ drift, horizontal wind, magnetic field, solar activity, photoionization rate, chemical reactions and solar EUV flux are considered as inputs for the calculation of electron/ion density. Heating due to photoelectrons, collision between ions, ions and electrons, rotational heat transfer, vibrational heat transfer and thermal conductivity are considered for the calculation of electron and ion temperatures (Bhuyan et al., 2008).","PeriodicalId":344386,"journal":{"name":"2019 URSI Asia-Pacific Radio Science Conference (AP-RASC)","volume":"314 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical modelling of the topside electron density distribution in the Indian equatorial and low latitude ionosphere using DU_LLTD Model\",\"authors\":\"Rimpy Kakoty, P. K. Bhuyan\",\"doi\":\"10.23919/URSIAP-RASC.2019.8738607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spatial and temporal distribution of ionospheric electron density in the Indian equatorial and low latitudes during high solar activity conditions is theoretically simulated. The Dibrugarh University Low Latitude Temperature and Density (DU_LLTD) Model, which operates by simultaneously solving the time-dependent equations of continuity, momentum and energy balance equations along the ED (eccentric dipole) geomagnetic field lines (Bhuyan et al., 2001a,b) is used to generate the density profiles at different heights for solar maximum equinoctial condition. The effects of $\\\\mathrm{E} \\\\times \\\\mathrm{B}$ drift, horizontal wind, magnetic field, solar activity, photoionization rate, chemical reactions and solar EUV flux are considered as inputs for the calculation of electron/ion density. Heating due to photoelectrons, collision between ions, ions and electrons, rotational heat transfer, vibrational heat transfer and thermal conductivity are considered for the calculation of electron and ion temperatures (Bhuyan et al., 2008).\",\"PeriodicalId\":344386,\"journal\":{\"name\":\"2019 URSI Asia-Pacific Radio Science Conference (AP-RASC)\",\"volume\":\"314 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 URSI Asia-Pacific Radio Science Conference (AP-RASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/URSIAP-RASC.2019.8738607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 URSI Asia-Pacific Radio Science Conference (AP-RASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/URSIAP-RASC.2019.8738607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
理论模拟了太阳高活动条件下印度赤道和低纬度地区电离层电子密度的时空分布。Dibrugarh University Low Latitude Temperature and Density (DU_LLTD)模型通过同时求解ED(偏心偶极子)地磁线上的连续性方程、动量方程和能量平衡方程(Bhuyan et al., 2001a,b)来生成太阳极大分点条件下不同高度的密度剖面。计算电子/离子密度时,考虑了漂移、水平风、磁场、太阳活动、光离率、化学反应和太阳EUV通量的影响。在计算电子和离子温度时,考虑了光电子加热、离子碰撞、离子与电子碰撞、旋转传热、振动传热和导热系数(Bhuyan et al., 2008)。
Theoretical modelling of the topside electron density distribution in the Indian equatorial and low latitude ionosphere using DU_LLTD Model
The spatial and temporal distribution of ionospheric electron density in the Indian equatorial and low latitudes during high solar activity conditions is theoretically simulated. The Dibrugarh University Low Latitude Temperature and Density (DU_LLTD) Model, which operates by simultaneously solving the time-dependent equations of continuity, momentum and energy balance equations along the ED (eccentric dipole) geomagnetic field lines (Bhuyan et al., 2001a,b) is used to generate the density profiles at different heights for solar maximum equinoctial condition. The effects of $\mathrm{E} \times \mathrm{B}$ drift, horizontal wind, magnetic field, solar activity, photoionization rate, chemical reactions and solar EUV flux are considered as inputs for the calculation of electron/ion density. Heating due to photoelectrons, collision between ions, ions and electrons, rotational heat transfer, vibrational heat transfer and thermal conductivity are considered for the calculation of electron and ion temperatures (Bhuyan et al., 2008).