非对称结构欠驱动双足机器人动力学行走分析

B. Beigzadeh, S. Razavi
{"title":"非对称结构欠驱动双足机器人动力学行走分析","authors":"B. Beigzadeh, S. Razavi","doi":"10.1142/s0219843621500146","DOIUrl":null,"url":null,"abstract":"Owing to their nonlinear structures and dynamics, bipedal walking robots are commonly used as appropriate case studies for nonlinear modeling and control. In this study, the dynamics of a point-feet 4-link biped robot having asymmetric structure is studied. This asymmetry appears on the robot’s legs such that one leg of the robot does have an active knee while the other is knee-less. In this way, the style and analysis of each step depends on which leg is the stance leg. Although the stable steady state behavior of the system is purely periodic, the gait cycle does consist of two sequential steps. Since each step includes a continuous phase followed by an impact phase, hence, we need to model the system as a multiphase (4-phase) hybrid system. The main purpose of this research is to find stable gating pattern and employ appropriate controller to make sure that the gating is accomplished in an asymptotically stable manner. A combination of feedback linearization and finite-time controllers is used to control the walking posture, and the stability of the whole behavior is investigated by analysis of a one-dimensional Poincaré map. Simulation results successfully support the modeling and control approach.","PeriodicalId":312776,"journal":{"name":"Int. J. Humanoid Robotics","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Dynamic Walking Analysis of an Underactuated Biped Robot with Asymmetric Structure\",\"authors\":\"B. Beigzadeh, S. Razavi\",\"doi\":\"10.1142/s0219843621500146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Owing to their nonlinear structures and dynamics, bipedal walking robots are commonly used as appropriate case studies for nonlinear modeling and control. In this study, the dynamics of a point-feet 4-link biped robot having asymmetric structure is studied. This asymmetry appears on the robot’s legs such that one leg of the robot does have an active knee while the other is knee-less. In this way, the style and analysis of each step depends on which leg is the stance leg. Although the stable steady state behavior of the system is purely periodic, the gait cycle does consist of two sequential steps. Since each step includes a continuous phase followed by an impact phase, hence, we need to model the system as a multiphase (4-phase) hybrid system. The main purpose of this research is to find stable gating pattern and employ appropriate controller to make sure that the gating is accomplished in an asymptotically stable manner. A combination of feedback linearization and finite-time controllers is used to control the walking posture, and the stability of the whole behavior is investigated by analysis of a one-dimensional Poincaré map. Simulation results successfully support the modeling and control approach.\",\"PeriodicalId\":312776,\"journal\":{\"name\":\"Int. J. Humanoid Robotics\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Humanoid Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219843621500146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Humanoid Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219843621500146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

由于两足步行机器人的非线性结构和动力学特性,它们通常被用作非线性建模和控制的合适案例研究。本文研究了具有非对称结构的点足四连杆双足机器人的动力学问题。这种不对称表现在机器人的腿上,比如机器人的一条腿有活动膝盖,而另一条腿没有膝盖。这样,每一步的风格和分析就取决于哪条腿是站位腿。虽然系统的稳定稳态行为是纯周期性的,但步态周期确实由两个连续的步骤组成。由于每个步骤都包括一个连续阶段,然后是一个影响阶段,因此,我们需要将系统建模为多相(4相)混合系统。本研究的主要目的是寻找稳定的门控模式,并使用适当的控制器以确保门控以渐近稳定的方式完成。采用反馈线性化和有限时间控制器相结合的方法对机器人的行走姿态进行控制,并通过分析一维庞卡罗图来研究机器人整体行为的稳定性。仿真结果成功地支持了该建模和控制方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Walking Analysis of an Underactuated Biped Robot with Asymmetric Structure
Owing to their nonlinear structures and dynamics, bipedal walking robots are commonly used as appropriate case studies for nonlinear modeling and control. In this study, the dynamics of a point-feet 4-link biped robot having asymmetric structure is studied. This asymmetry appears on the robot’s legs such that one leg of the robot does have an active knee while the other is knee-less. In this way, the style and analysis of each step depends on which leg is the stance leg. Although the stable steady state behavior of the system is purely periodic, the gait cycle does consist of two sequential steps. Since each step includes a continuous phase followed by an impact phase, hence, we need to model the system as a multiphase (4-phase) hybrid system. The main purpose of this research is to find stable gating pattern and employ appropriate controller to make sure that the gating is accomplished in an asymptotically stable manner. A combination of feedback linearization and finite-time controllers is used to control the walking posture, and the stability of the whole behavior is investigated by analysis of a one-dimensional Poincaré map. Simulation results successfully support the modeling and control approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信