矩阵分解的安全多方保密协议

Haiyan Xiao, Xiaoyuan Yang
{"title":"矩阵分解的安全多方保密协议","authors":"Haiyan Xiao, Xiaoyuan Yang","doi":"10.1109/INCoS.2013.89","DOIUrl":null,"url":null,"abstract":"The confidential computation of matrix is a very important issue in secure multi-party computation. But there is no literature proposed truly multi-party confidential computation protocol on matrix factorization. In this paper, we use data perturbation assumptions and oblivious transfer protocol to construct a multi-party confidential computation protocol on matrix factorization which has high efficiency.","PeriodicalId":353706,"journal":{"name":"2013 5th International Conference on Intelligent Networking and Collaborative Systems","volume":"277 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secure Multi-party Confidential Protocol of Matrix Factorization\",\"authors\":\"Haiyan Xiao, Xiaoyuan Yang\",\"doi\":\"10.1109/INCoS.2013.89\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The confidential computation of matrix is a very important issue in secure multi-party computation. But there is no literature proposed truly multi-party confidential computation protocol on matrix factorization. In this paper, we use data perturbation assumptions and oblivious transfer protocol to construct a multi-party confidential computation protocol on matrix factorization which has high efficiency.\",\"PeriodicalId\":353706,\"journal\":{\"name\":\"2013 5th International Conference on Intelligent Networking and Collaborative Systems\",\"volume\":\"277 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 5th International Conference on Intelligent Networking and Collaborative Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INCoS.2013.89\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 5th International Conference on Intelligent Networking and Collaborative Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INCoS.2013.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

矩阵的保密计算是安全多方计算中的一个重要问题。但目前还没有文献提出真正的基于矩阵分解的多方保密计算协议。本文利用数据摄动假设和不经意传输协议,构造了一个高效的多方保密矩阵分解计算协议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Secure Multi-party Confidential Protocol of Matrix Factorization
The confidential computation of matrix is a very important issue in secure multi-party computation. But there is no literature proposed truly multi-party confidential computation protocol on matrix factorization. In this paper, we use data perturbation assumptions and oblivious transfer protocol to construct a multi-party confidential computation protocol on matrix factorization which has high efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信