Xunyan Yin, Min-li Bai, Chengzhi Hu, Jizu Lv, Yubai Li
{"title":"不同润湿性纳米颗粒纳米流体在疏水表面沸腾行为的分子动力学模拟","authors":"Xunyan Yin, Min-li Bai, Chengzhi Hu, Jizu Lv, Yubai Li","doi":"10.1115/mnhmt2019-4164","DOIUrl":null,"url":null,"abstract":"\n Molecular dynamics simulation is performed to investigate the rapid boiling of nanofluid with the variation nanoparticle wettabilities above hydrophobic surface. Four fluids are selected: base fluid (fluid 1), nanofluid with nanoparticle wettability less than (fluid 2), equal tofluid 3) and greater than (fluid 4) surface wettability. It should be noted that nanoparticle is deposited on the surface in this paper. Results show that nanofluid responds rapid boiling faster than base fluid. For fluid 4, the efficiency in heat transfer is enhanced due to the improvement of surface wettability. While for fluid 2 and 3, the surface wettability is deteriorated by the depositional nanoparticle. The heat flux is strengthened, but argon temperature and evaporation number reduce, and thus fluid 2 and 3 are not beneficial for heat transfer.","PeriodicalId":331854,"journal":{"name":"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Molecular Dynamics Simulation of Boiling Behavior of Nanofluid With Various Wettability Nanoparticle on Hydrophobic Surface\",\"authors\":\"Xunyan Yin, Min-li Bai, Chengzhi Hu, Jizu Lv, Yubai Li\",\"doi\":\"10.1115/mnhmt2019-4164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Molecular dynamics simulation is performed to investigate the rapid boiling of nanofluid with the variation nanoparticle wettabilities above hydrophobic surface. Four fluids are selected: base fluid (fluid 1), nanofluid with nanoparticle wettability less than (fluid 2), equal tofluid 3) and greater than (fluid 4) surface wettability. It should be noted that nanoparticle is deposited on the surface in this paper. Results show that nanofluid responds rapid boiling faster than base fluid. For fluid 4, the efficiency in heat transfer is enhanced due to the improvement of surface wettability. While for fluid 2 and 3, the surface wettability is deteriorated by the depositional nanoparticle. The heat flux is strengthened, but argon temperature and evaporation number reduce, and thus fluid 2 and 3 are not beneficial for heat transfer.\",\"PeriodicalId\":331854,\"journal\":{\"name\":\"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/mnhmt2019-4164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/mnhmt2019-4164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Molecular Dynamics Simulation of Boiling Behavior of Nanofluid With Various Wettability Nanoparticle on Hydrophobic Surface
Molecular dynamics simulation is performed to investigate the rapid boiling of nanofluid with the variation nanoparticle wettabilities above hydrophobic surface. Four fluids are selected: base fluid (fluid 1), nanofluid with nanoparticle wettability less than (fluid 2), equal tofluid 3) and greater than (fluid 4) surface wettability. It should be noted that nanoparticle is deposited on the surface in this paper. Results show that nanofluid responds rapid boiling faster than base fluid. For fluid 4, the efficiency in heat transfer is enhanced due to the improvement of surface wettability. While for fluid 2 and 3, the surface wettability is deteriorated by the depositional nanoparticle. The heat flux is strengthened, but argon temperature and evaporation number reduce, and thus fluid 2 and 3 are not beneficial for heat transfer.