{"title":"表示二次残数的有限域上的4次多项式","authors":"Shao-Fei Du, Klavdija Kutnar, D. Marušič","doi":"10.26493/2590-9770.1330.993","DOIUrl":null,"url":null,"abstract":"It is proved that in a finite field F of prime order p, where p is not one of finitely many exceptions, for every polynomial f(x) ∈ F [x] of degree 4 that has a nonzero constant term and is not of the form αg(x) there exists a primitive root β ∈ F such that f(β) is a quadratic residue in F . This refines a result of Madden and Vélez from 1982 about polynomials that represent quadratic residues at primitive roots.","PeriodicalId":236892,"journal":{"name":"Art Discret. Appl. Math.","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Polynomials of degree 4 over finite fields representing quadratic residues\",\"authors\":\"Shao-Fei Du, Klavdija Kutnar, D. Marušič\",\"doi\":\"10.26493/2590-9770.1330.993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is proved that in a finite field F of prime order p, where p is not one of finitely many exceptions, for every polynomial f(x) ∈ F [x] of degree 4 that has a nonzero constant term and is not of the form αg(x) there exists a primitive root β ∈ F such that f(β) is a quadratic residue in F . This refines a result of Madden and Vélez from 1982 about polynomials that represent quadratic residues at primitive roots.\",\"PeriodicalId\":236892,\"journal\":{\"name\":\"Art Discret. Appl. Math.\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Art Discret. Appl. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/2590-9770.1330.993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art Discret. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1330.993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Polynomials of degree 4 over finite fields representing quadratic residues
It is proved that in a finite field F of prime order p, where p is not one of finitely many exceptions, for every polynomial f(x) ∈ F [x] of degree 4 that has a nonzero constant term and is not of the form αg(x) there exists a primitive root β ∈ F such that f(β) is a quadratic residue in F . This refines a result of Madden and Vélez from 1982 about polynomials that represent quadratic residues at primitive roots.