{"title":"一种用于无线自组网的分布式移动主干网形成算法","authors":"L. H. Ju, I. Rubin, Kevin Ni, Christopher Wu","doi":"10.1109/BROADNETS.2004.4","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel fully distributed version of a mobile backbone network topology synthesis algorithm (MBN-TSA) for constructing and maintaining a dynamic backbone in mobile wireless ad hoc networks. The following features induce the key advantages offered by the algorithm: a) the MBN-TSA algorithm is designed to work with the unreliable natural of wireless environment; b) the backbone layout is dynamically formed and locally modified in response to communications link quality fluctuations, nodal failures and nodal mobility; c) a control mechanism employing the BN/spl I.bar/neighbor/spl I.bar/limit threshold as a key parameter, is introduced to control the size of the backbone network (BNet) and improve stability; d) analytical results show that the MBN-TSA has very little control overhead: time complexity in the order of O(l) and message complexity in the order of O(l) per node. In addition, we present an on-demand routing protocol that makes use of the underlying dynamically self-configured MBN network infrastructure. By carrying out extensive simulations, we demonstrate the performance advantages when compared to a non backbone oriented on-demand ad hoc routing protocol such as AODV.","PeriodicalId":305639,"journal":{"name":"First International Conference on Broadband Networks","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"A distributed mobile backbone formation algorithm for wireless ad hoc networks\",\"authors\":\"L. H. Ju, I. Rubin, Kevin Ni, Christopher Wu\",\"doi\":\"10.1109/BROADNETS.2004.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel fully distributed version of a mobile backbone network topology synthesis algorithm (MBN-TSA) for constructing and maintaining a dynamic backbone in mobile wireless ad hoc networks. The following features induce the key advantages offered by the algorithm: a) the MBN-TSA algorithm is designed to work with the unreliable natural of wireless environment; b) the backbone layout is dynamically formed and locally modified in response to communications link quality fluctuations, nodal failures and nodal mobility; c) a control mechanism employing the BN/spl I.bar/neighbor/spl I.bar/limit threshold as a key parameter, is introduced to control the size of the backbone network (BNet) and improve stability; d) analytical results show that the MBN-TSA has very little control overhead: time complexity in the order of O(l) and message complexity in the order of O(l) per node. In addition, we present an on-demand routing protocol that makes use of the underlying dynamically self-configured MBN network infrastructure. By carrying out extensive simulations, we demonstrate the performance advantages when compared to a non backbone oriented on-demand ad hoc routing protocol such as AODV.\",\"PeriodicalId\":305639,\"journal\":{\"name\":\"First International Conference on Broadband Networks\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First International Conference on Broadband Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BROADNETS.2004.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Conference on Broadband Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BROADNETS.2004.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A distributed mobile backbone formation algorithm for wireless ad hoc networks
In this paper, we present a novel fully distributed version of a mobile backbone network topology synthesis algorithm (MBN-TSA) for constructing and maintaining a dynamic backbone in mobile wireless ad hoc networks. The following features induce the key advantages offered by the algorithm: a) the MBN-TSA algorithm is designed to work with the unreliable natural of wireless environment; b) the backbone layout is dynamically formed and locally modified in response to communications link quality fluctuations, nodal failures and nodal mobility; c) a control mechanism employing the BN/spl I.bar/neighbor/spl I.bar/limit threshold as a key parameter, is introduced to control the size of the backbone network (BNet) and improve stability; d) analytical results show that the MBN-TSA has very little control overhead: time complexity in the order of O(l) and message complexity in the order of O(l) per node. In addition, we present an on-demand routing protocol that makes use of the underlying dynamically self-configured MBN network infrastructure. By carrying out extensive simulations, we demonstrate the performance advantages when compared to a non backbone oriented on-demand ad hoc routing protocol such as AODV.