基于非平衡类处理的子分组NMF高光谱图像分类

Md. Touhid Islam, Mohadeb Kumar, Md. Rashedul Islam, Md. Sohrawordi
{"title":"基于非平衡类处理的子分组NMF高光谱图像分类","authors":"Md. Touhid Islam, Mohadeb Kumar, Md. Rashedul Islam, Md. Sohrawordi","doi":"10.1109/ICCIT57492.2022.10055177","DOIUrl":null,"url":null,"abstract":"The remote sensing industry is actively discussing the classification of hyperspectral images (HSIs). For the first time, the idea of subgrouping dimensionality is presented using a modified deep learning model, and this research presents a novel framework for dimensionality reduction in HSI classification as a result. In particular, our system uses the subgrouping model to extract many characteristics from a dataset and then apply a selection criterion. First, we performed data reduction and subgrouping by extracting the correlation matrix. After that, we resample the data and use it as input for a hyperspectral picture classification. In the proposed framework, we combine NMF on spectral dimensions with information-based feature selection and a wavelet-based 2D CNN on spatial dimensions to classify spectral-spatial data. Based on the experimental findings, it is clear that this framework delivers the most excellent classification accuracy compared to other approaches, including traditional classifiers like PCA and MNF-based deep learning methods.","PeriodicalId":255498,"journal":{"name":"2022 25th International Conference on Computer and Information Technology (ICCIT)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subgrouping-Based NMF with Imbalanced Class Handling for Hyperspectral Image Classification\",\"authors\":\"Md. Touhid Islam, Mohadeb Kumar, Md. Rashedul Islam, Md. Sohrawordi\",\"doi\":\"10.1109/ICCIT57492.2022.10055177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The remote sensing industry is actively discussing the classification of hyperspectral images (HSIs). For the first time, the idea of subgrouping dimensionality is presented using a modified deep learning model, and this research presents a novel framework for dimensionality reduction in HSI classification as a result. In particular, our system uses the subgrouping model to extract many characteristics from a dataset and then apply a selection criterion. First, we performed data reduction and subgrouping by extracting the correlation matrix. After that, we resample the data and use it as input for a hyperspectral picture classification. In the proposed framework, we combine NMF on spectral dimensions with information-based feature selection and a wavelet-based 2D CNN on spatial dimensions to classify spectral-spatial data. Based on the experimental findings, it is clear that this framework delivers the most excellent classification accuracy compared to other approaches, including traditional classifiers like PCA and MNF-based deep learning methods.\",\"PeriodicalId\":255498,\"journal\":{\"name\":\"2022 25th International Conference on Computer and Information Technology (ICCIT)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 25th International Conference on Computer and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIT57492.2022.10055177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 25th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIT57492.2022.10055177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

遥感界正在积极讨论高光谱图像的分类问题。本研究首次使用改进的深度学习模型提出了子分组维数的概念,从而提出了一种新的HSI分类降维框架。特别是,我们的系统使用子分组模型从数据集中提取许多特征,然后应用选择标准。首先,通过提取相关矩阵进行数据约简和分组。之后,我们重新采样数据,并将其用作高光谱图像分类的输入。在该框架中,我们将基于光谱维度的NMF与基于信息的特征选择相结合,并将基于小波的二维CNN与空间维度相结合,对光谱空间数据进行分类。根据实验结果,很明显,与其他方法(包括传统的分类器,如PCA和基于mnf的深度学习方法)相比,该框架提供了最优秀的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subgrouping-Based NMF with Imbalanced Class Handling for Hyperspectral Image Classification
The remote sensing industry is actively discussing the classification of hyperspectral images (HSIs). For the first time, the idea of subgrouping dimensionality is presented using a modified deep learning model, and this research presents a novel framework for dimensionality reduction in HSI classification as a result. In particular, our system uses the subgrouping model to extract many characteristics from a dataset and then apply a selection criterion. First, we performed data reduction and subgrouping by extracting the correlation matrix. After that, we resample the data and use it as input for a hyperspectral picture classification. In the proposed framework, we combine NMF on spectral dimensions with information-based feature selection and a wavelet-based 2D CNN on spatial dimensions to classify spectral-spatial data. Based on the experimental findings, it is clear that this framework delivers the most excellent classification accuracy compared to other approaches, including traditional classifiers like PCA and MNF-based deep learning methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信