基于序列ELM的认知环境下人类活动识别

R. C. Kumar, S. S. Bharadwaj, B. N. Sumukha, K. George
{"title":"基于序列ELM的认知环境下人类活动识别","authors":"R. C. Kumar, S. S. Bharadwaj, B. N. Sumukha, K. George","doi":"10.1109/CCIP.2016.7802880","DOIUrl":null,"url":null,"abstract":"Human activity recognition (HAR) and Extreme Learning Machines (ELM) are emerging fields of research. HAR investigates the behavioural attributes of humans and integrates that to an electronic system. An ELM is a fast learning algorithm, and overcomes the fundamental issue of slow training-error convergence that other algorithms such as the back propagation algorithm suffer. In this paper, we present the blend of the two fields by classifying the behavioural attributes of humans using Artificial Neural Networks (ANN) trained by Sequential Extreme Learning Algorithm (SELA). The algorithm is efficacious with a remarkable accuracy despite circumventing the vital job of pre-processing and feature extraction from signals that have been acquired from sensors.","PeriodicalId":354589,"journal":{"name":"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Human activity recognition in cognitive environments using sequential ELM\",\"authors\":\"R. C. Kumar, S. S. Bharadwaj, B. N. Sumukha, K. George\",\"doi\":\"10.1109/CCIP.2016.7802880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human activity recognition (HAR) and Extreme Learning Machines (ELM) are emerging fields of research. HAR investigates the behavioural attributes of humans and integrates that to an electronic system. An ELM is a fast learning algorithm, and overcomes the fundamental issue of slow training-error convergence that other algorithms such as the back propagation algorithm suffer. In this paper, we present the blend of the two fields by classifying the behavioural attributes of humans using Artificial Neural Networks (ANN) trained by Sequential Extreme Learning Algorithm (SELA). The algorithm is efficacious with a remarkable accuracy despite circumventing the vital job of pre-processing and feature extraction from signals that have been acquired from sensors.\",\"PeriodicalId\":354589,\"journal\":{\"name\":\"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCIP.2016.7802880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIP.2016.7802880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

人类活动识别(HAR)和极限学习机(ELM)是新兴的研究领域。HAR研究人类的行为属性,并将其整合到电子系统中。ELM是一种快速学习算法,克服了其他算法(如反向传播算法)所面临的训练误差收敛缓慢的基本问题。在本文中,我们通过使用序列极限学习算法(SELA)训练的人工神经网络(ANN)对人类的行为属性进行分类,提出了这两个领域的融合。尽管该算法绕过了从传感器获取的信号的预处理和特征提取的重要工作,但该算法具有显著的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human activity recognition in cognitive environments using sequential ELM
Human activity recognition (HAR) and Extreme Learning Machines (ELM) are emerging fields of research. HAR investigates the behavioural attributes of humans and integrates that to an electronic system. An ELM is a fast learning algorithm, and overcomes the fundamental issue of slow training-error convergence that other algorithms such as the back propagation algorithm suffer. In this paper, we present the blend of the two fields by classifying the behavioural attributes of humans using Artificial Neural Networks (ANN) trained by Sequential Extreme Learning Algorithm (SELA). The algorithm is efficacious with a remarkable accuracy despite circumventing the vital job of pre-processing and feature extraction from signals that have been acquired from sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信