离散概率分布的加权参数散度模型

M. Sarangal, O. Parkash
{"title":"离散概率分布的加权参数散度模型","authors":"M. Sarangal, O. Parkash","doi":"10.56947/gjom.v13i2.721","DOIUrl":null,"url":null,"abstract":"In the literature of information measures, it is well acknowledged phenomenon that distance models in probability spaces discover incredible applications in a diversity of disciplines related with science and technology. The significance of these models after attaching weights to the occurring events cannot be disregarded. The present communication is a footstep in the construction of such divergence models. We have developed two new weighted parametric divergence models for the discrete probability distributions and proved their legitimacy after studying their indispensable properties.","PeriodicalId":421614,"journal":{"name":"Gulf Journal of Mathematics","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted parametric divergence models for discrete probability distributions\",\"authors\":\"M. Sarangal, O. Parkash\",\"doi\":\"10.56947/gjom.v13i2.721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the literature of information measures, it is well acknowledged phenomenon that distance models in probability spaces discover incredible applications in a diversity of disciplines related with science and technology. The significance of these models after attaching weights to the occurring events cannot be disregarded. The present communication is a footstep in the construction of such divergence models. We have developed two new weighted parametric divergence models for the discrete probability distributions and proved their legitimacy after studying their indispensable properties.\",\"PeriodicalId\":421614,\"journal\":{\"name\":\"Gulf Journal of Mathematics\",\"volume\":\"199 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gulf Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56947/gjom.v13i2.721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gulf Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56947/gjom.v13i2.721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在信息测量的文献中,概率空间中的距离模型在与科学和技术相关的各种学科中发现了令人难以置信的应用,这是一个公认的现象。这些模型在对发生的事件附加权重后的重要性是不容忽视的。当前的交流是构建这种分歧模型的一个步骤。我们建立了两个新的离散概率分布的加权参数散度模型,并在研究了它们不可缺少的性质后证明了它们的合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted parametric divergence models for discrete probability distributions
In the literature of information measures, it is well acknowledged phenomenon that distance models in probability spaces discover incredible applications in a diversity of disciplines related with science and technology. The significance of these models after attaching weights to the occurring events cannot be disregarded. The present communication is a footstep in the construction of such divergence models. We have developed two new weighted parametric divergence models for the discrete probability distributions and proved their legitimacy after studying their indispensable properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信