{"title":"基于模型的动态系统预测互连方法","authors":"G. Stettinger, M. Horn, M. Benedikt, J. Zehetner","doi":"10.1109/CDC.2014.7039897","DOIUrl":null,"url":null,"abstract":"This paper proposes a model based coupling technique for interconnected systems. It helps to overcome problems arising whenever the interconnections have a non-negligible influence on the overall system behavior. The main idea of the method is to use prediction schemes which compensate for performance degradation due to coupling imperfections. Exemplarily the so-called co-simulation scenario is selected to demonstrate the principles of the presented approach and its effectiveness by means of a complex real-time application.","PeriodicalId":202708,"journal":{"name":"53rd IEEE Conference on Decision and Control","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A model-based approach for prediction-based interconnection of dynamic systems\",\"authors\":\"G. Stettinger, M. Horn, M. Benedikt, J. Zehetner\",\"doi\":\"10.1109/CDC.2014.7039897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a model based coupling technique for interconnected systems. It helps to overcome problems arising whenever the interconnections have a non-negligible influence on the overall system behavior. The main idea of the method is to use prediction schemes which compensate for performance degradation due to coupling imperfections. Exemplarily the so-called co-simulation scenario is selected to demonstrate the principles of the presented approach and its effectiveness by means of a complex real-time application.\",\"PeriodicalId\":202708,\"journal\":{\"name\":\"53rd IEEE Conference on Decision and Control\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"53rd IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2014.7039897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"53rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2014.7039897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A model-based approach for prediction-based interconnection of dynamic systems
This paper proposes a model based coupling technique for interconnected systems. It helps to overcome problems arising whenever the interconnections have a non-negligible influence on the overall system behavior. The main idea of the method is to use prediction schemes which compensate for performance degradation due to coupling imperfections. Exemplarily the so-called co-simulation scenario is selected to demonstrate the principles of the presented approach and its effectiveness by means of a complex real-time application.