{"title":"结合多个非同质分类器:一种经验方法","authors":"J. Parker","doi":"10.1109/COGINF.2002.1039309","DOIUrl":null,"url":null,"abstract":"The use of prior behavior of a classifier, as measured by the confusion matrix, can yield useful information for merging multiple classifiers. In particular a ranking of possible classes can be produced which can allow Borda type reconciliation methods to be applied. A simulation of multiple classifiers is used to evaluate this idea, and compare with three other classifier combination techniques.","PeriodicalId":250129,"journal":{"name":"Proceedings First IEEE International Conference on Cognitive Informatics","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Combining multiple non-homogeneous classifiers: an empirical approach\",\"authors\":\"J. Parker\",\"doi\":\"10.1109/COGINF.2002.1039309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of prior behavior of a classifier, as measured by the confusion matrix, can yield useful information for merging multiple classifiers. In particular a ranking of possible classes can be produced which can allow Borda type reconciliation methods to be applied. A simulation of multiple classifiers is used to evaluate this idea, and compare with three other classifier combination techniques.\",\"PeriodicalId\":250129,\"journal\":{\"name\":\"Proceedings First IEEE International Conference on Cognitive Informatics\",\"volume\":\"137 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings First IEEE International Conference on Cognitive Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COGINF.2002.1039309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings First IEEE International Conference on Cognitive Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COGINF.2002.1039309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combining multiple non-homogeneous classifiers: an empirical approach
The use of prior behavior of a classifier, as measured by the confusion matrix, can yield useful information for merging multiple classifiers. In particular a ranking of possible classes can be produced which can allow Borda type reconciliation methods to be applied. A simulation of multiple classifiers is used to evaluate this idea, and compare with three other classifier combination techniques.