基于种群的增量学习算法的收敛性证明

R. Rastegar, A. Hariri, M. Mazoochi
{"title":"基于种群的增量学习算法的收敛性证明","authors":"R. Rastegar, A. Hariri, M. Mazoochi","doi":"10.1109/ICTAI.2005.6","DOIUrl":null,"url":null,"abstract":"Here we propose a convergence proof for the population based incremental learning (PBIL). In our approach, first, we model the PBIL by the Markov process and approximate its behavior using Ordinary Differential Equation (ODE). Then we prove that the corresponding ODE doesn’t have any stable stationary points in [0,1]n, n is the number of variables, except the local maxima of the function to be optimized. Finally we show that this ODE and consequently the PBIL converge to one of these stable attractors.","PeriodicalId":294694,"journal":{"name":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A Convergence Proof for the Population Based Incremental Learning Algorithm\",\"authors\":\"R. Rastegar, A. Hariri, M. Mazoochi\",\"doi\":\"10.1109/ICTAI.2005.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here we propose a convergence proof for the population based incremental learning (PBIL). In our approach, first, we model the PBIL by the Markov process and approximate its behavior using Ordinary Differential Equation (ODE). Then we prove that the corresponding ODE doesn’t have any stable stationary points in [0,1]n, n is the number of variables, except the local maxima of the function to be optimized. Finally we show that this ODE and consequently the PBIL converge to one of these stable attractors.\",\"PeriodicalId\":294694,\"journal\":{\"name\":\"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2005.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2005.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文提出了基于种群的增量学习(PBIL)的收敛性证明。在我们的方法中,首先,我们通过马尔可夫过程对PBIL建模,并使用常微分方程(ODE)近似其行为。然后证明相应的ODE在[0,1]n中不存在任何稳定的平稳点,n为变量个数,除了待优化函数的局部最大值。最后,我们证明了该ODE和相应的PBIL收敛于这些稳定吸引子之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Convergence Proof for the Population Based Incremental Learning Algorithm
Here we propose a convergence proof for the population based incremental learning (PBIL). In our approach, first, we model the PBIL by the Markov process and approximate its behavior using Ordinary Differential Equation (ODE). Then we prove that the corresponding ODE doesn’t have any stable stationary points in [0,1]n, n is the number of variables, except the local maxima of the function to be optimized. Finally we show that this ODE and consequently the PBIL converge to one of these stable attractors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信