用于帕金森病自动检测的调制光谱

T. Villa-Cañas, J. Orozco-Arroyave, J. Vargas-Bonilla, J. D. Arias-Londoño
{"title":"用于帕金森病自动检测的调制光谱","authors":"T. Villa-Cañas, J. Orozco-Arroyave, J. Vargas-Bonilla, J. D. Arias-Londoño","doi":"10.1109/STSIVA.2014.7010173","DOIUrl":null,"url":null,"abstract":"In this paper, we explore the information provided by a joint acoustic and modulation frequency representation, referred as modulation spectrum, for detection of people with Parkinsons disease through speech signals. The set of features includes the centroids and the energy content of different frequency bands in the modulation spectra of the recordings. Additionally, with the aim to eliminate possible redundancy in the information provided by the features, two different feature extraction techniques are applied, Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). The classification was done by means of Gaussian mixture model (GMM). The results show that this approach is acceptable for this purpose, with the best accuracy around 71% for vowel /i/.","PeriodicalId":114554,"journal":{"name":"2014 XIX Symposium on Image, Signal Processing and Artificial Vision","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Modulation spectra for automatic detection of Parkinson's disease\",\"authors\":\"T. Villa-Cañas, J. Orozco-Arroyave, J. Vargas-Bonilla, J. D. Arias-Londoño\",\"doi\":\"10.1109/STSIVA.2014.7010173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we explore the information provided by a joint acoustic and modulation frequency representation, referred as modulation spectrum, for detection of people with Parkinsons disease through speech signals. The set of features includes the centroids and the energy content of different frequency bands in the modulation spectra of the recordings. Additionally, with the aim to eliminate possible redundancy in the information provided by the features, two different feature extraction techniques are applied, Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). The classification was done by means of Gaussian mixture model (GMM). The results show that this approach is acceptable for this purpose, with the best accuracy around 71% for vowel /i/.\",\"PeriodicalId\":114554,\"journal\":{\"name\":\"2014 XIX Symposium on Image, Signal Processing and Artificial Vision\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 XIX Symposium on Image, Signal Processing and Artificial Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STSIVA.2014.7010173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 XIX Symposium on Image, Signal Processing and Artificial Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2014.7010173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们探索了通过语音信号检测帕金森病患者的联合声学和调制频率表示(称为调制频谱)提供的信息。特征集包括记录调制谱中不同频带的质心和能量含量。此外,为了消除特征提供的信息中可能存在的冗余,应用了两种不同的特征提取技术,主成分分析(PCA)和线性判别分析(LDA)。采用高斯混合模型(GMM)进行分类。结果表明,这种方法是可以接受的,对于元音/i/,准确率最高在71%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modulation spectra for automatic detection of Parkinson's disease
In this paper, we explore the information provided by a joint acoustic and modulation frequency representation, referred as modulation spectrum, for detection of people with Parkinsons disease through speech signals. The set of features includes the centroids and the energy content of different frequency bands in the modulation spectra of the recordings. Additionally, with the aim to eliminate possible redundancy in the information provided by the features, two different feature extraction techniques are applied, Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). The classification was done by means of Gaussian mixture model (GMM). The results show that this approach is acceptable for this purpose, with the best accuracy around 71% for vowel /i/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信