电磁与原子相互作用中重要半无穷积分的计算研究

C. Qiu, Lewei Li, T. Yeo, S. Zouhdi
{"title":"电磁与原子相互作用中重要半无穷积分的计算研究","authors":"C. Qiu, Lewei Li, T. Yeo, S. Zouhdi","doi":"10.1109/EMCZUR.2006.214905","DOIUrl":null,"url":null,"abstract":"When deriving dyadic Green's functions for the spherical structures with uniaxial or gyrotropic anisotropic materials and studying the interaction among the neutrons, ions and atoms, some semi-infinite integrals whose integrant function consists of two spherical Bessel functions and a power function needs to be evaluated. Furthermore, those kinds of integrals are of great importance to the research of atomic particle collisions, multipole moments and relativistic processes. During the recent work associated with the formulations, we evaluated in detail the integrals of two spherical Bessel functions given in C.T. Whelan (1986), but found the mistakes in the solution given in C.T. Whelan (1986). Therefore, this paper revisited the evaluation of the integral and provided the correct solution to the integral in spherical coordinates in terms of distribution, step functions and delta functions. The formulation was further extended and it is also found that the solution varies differently in the cases of even and odd values of l - l'","PeriodicalId":130489,"journal":{"name":"2006 17th International Zurich Symposium on Electromagnetic Compatibility","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computational study of significant semi-infinite integrals in electromagnetic and atomic interactions\",\"authors\":\"C. Qiu, Lewei Li, T. Yeo, S. Zouhdi\",\"doi\":\"10.1109/EMCZUR.2006.214905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When deriving dyadic Green's functions for the spherical structures with uniaxial or gyrotropic anisotropic materials and studying the interaction among the neutrons, ions and atoms, some semi-infinite integrals whose integrant function consists of two spherical Bessel functions and a power function needs to be evaluated. Furthermore, those kinds of integrals are of great importance to the research of atomic particle collisions, multipole moments and relativistic processes. During the recent work associated with the formulations, we evaluated in detail the integrals of two spherical Bessel functions given in C.T. Whelan (1986), but found the mistakes in the solution given in C.T. Whelan (1986). Therefore, this paper revisited the evaluation of the integral and provided the correct solution to the integral in spherical coordinates in terms of distribution, step functions and delta functions. The formulation was further extended and it is also found that the solution varies differently in the cases of even and odd values of l - l'\",\"PeriodicalId\":130489,\"journal\":{\"name\":\"2006 17th International Zurich Symposium on Electromagnetic Compatibility\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 17th International Zurich Symposium on Electromagnetic Compatibility\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMCZUR.2006.214905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 17th International Zurich Symposium on Electromagnetic Compatibility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCZUR.2006.214905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在推导含单轴或陀螺各向异性材料的球形结构的并矢格林函数和研究中子、离子和原子之间的相互作用时,需要计算一些积分函数由两个球面贝塞尔函数和一个幂函数组成的半无穷积分。此外,这类积分对于原子粒子碰撞、多极矩和相对论过程的研究具有重要意义。在最近与公式相关的工作中,我们详细地评估了C.T.惠兰(1986)给出的两个球面贝塞尔函数的积分,但发现了C.T.惠兰(1986)给出的解中的错误。因此,本文从分布、阶跃函数和δ函数的角度,重新研究了积分的计算方法,给出了球坐标下积分的正确解。进一步推广了该公式,并发现在l - l'的偶值和奇值情况下,解的变化是不同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational study of significant semi-infinite integrals in electromagnetic and atomic interactions
When deriving dyadic Green's functions for the spherical structures with uniaxial or gyrotropic anisotropic materials and studying the interaction among the neutrons, ions and atoms, some semi-infinite integrals whose integrant function consists of two spherical Bessel functions and a power function needs to be evaluated. Furthermore, those kinds of integrals are of great importance to the research of atomic particle collisions, multipole moments and relativistic processes. During the recent work associated with the formulations, we evaluated in detail the integrals of two spherical Bessel functions given in C.T. Whelan (1986), but found the mistakes in the solution given in C.T. Whelan (1986). Therefore, this paper revisited the evaluation of the integral and provided the correct solution to the integral in spherical coordinates in terms of distribution, step functions and delta functions. The formulation was further extended and it is also found that the solution varies differently in the cases of even and odd values of l - l'
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信