{"title":"论自私网络创造的动态性","authors":"Bernd Kawald, Pascal Lenzner","doi":"10.1145/2486159.2486185","DOIUrl":null,"url":null,"abstract":"We consider the dynamic behavior of several variants of the Network Creation Game, introduced by Fabrikant et al. [PODC'03]. Equilibrium networks in these models have desirable properties like low social cost and small diameter, which makes them attractive for the decentralized creation of overlay-networks. Unfortunately, due to the non-constructiveness of the Nash equilibrium, no distributed algorithm for finding such networks is known. We treat these games as sequential-move games and analyze if (uncoordinated) selfish play eventually converges to an equilibrium. Thus, we shed light on one of the most natural algorithms for this problem: distributed local search, where in each step some agent performs a myopic selfish improving move. We show that fast convergence is guaranteed for all versions of Swap Games, introduced by Alon et al. [SPAA'10], if the initial network is a tree. Furthermore, we prove that this process can be sped up to an almost optimal number of moves by employing a very natural move policy. Unfortunately, these positive results are no longer true if the initial network has cycles and we show the surprising result that even one non-tree edge suffices to destroy the convergence guarantee. This answers an open problem from Ehsani et al. [SPAA'11] in the negative. Moreover, we show that on non-tree networks no move policy can enforce convergence. We extend our negative results to the well-studied original version, where agents are allowed to buy and delete edges as well. For this model we prove that there is no convergence guarantee - even if all agents play optimally. Even worse, if played on a non-complete host-graph, then there are instances where no sequence of improving moves leads to a stable network. Furthermore, we analyze whether cost-sharing has positive impact on the convergence behavior. For this we consider a version by Corbo and Parkes [PODC'05] where bilateral consent is needed for the creation of an edge and where edge-costs are shared among the involved agents. We show that employing such a cost-sharing rule yields even worse dynamic behavior..","PeriodicalId":353007,"journal":{"name":"Proceedings of the twenty-fifth annual ACM symposium on Parallelism in algorithms and architectures","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"On dynamics in selfish network creation\",\"authors\":\"Bernd Kawald, Pascal Lenzner\",\"doi\":\"10.1145/2486159.2486185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the dynamic behavior of several variants of the Network Creation Game, introduced by Fabrikant et al. [PODC'03]. Equilibrium networks in these models have desirable properties like low social cost and small diameter, which makes them attractive for the decentralized creation of overlay-networks. Unfortunately, due to the non-constructiveness of the Nash equilibrium, no distributed algorithm for finding such networks is known. We treat these games as sequential-move games and analyze if (uncoordinated) selfish play eventually converges to an equilibrium. Thus, we shed light on one of the most natural algorithms for this problem: distributed local search, where in each step some agent performs a myopic selfish improving move. We show that fast convergence is guaranteed for all versions of Swap Games, introduced by Alon et al. [SPAA'10], if the initial network is a tree. Furthermore, we prove that this process can be sped up to an almost optimal number of moves by employing a very natural move policy. Unfortunately, these positive results are no longer true if the initial network has cycles and we show the surprising result that even one non-tree edge suffices to destroy the convergence guarantee. This answers an open problem from Ehsani et al. [SPAA'11] in the negative. Moreover, we show that on non-tree networks no move policy can enforce convergence. We extend our negative results to the well-studied original version, where agents are allowed to buy and delete edges as well. For this model we prove that there is no convergence guarantee - even if all agents play optimally. Even worse, if played on a non-complete host-graph, then there are instances where no sequence of improving moves leads to a stable network. Furthermore, we analyze whether cost-sharing has positive impact on the convergence behavior. For this we consider a version by Corbo and Parkes [PODC'05] where bilateral consent is needed for the creation of an edge and where edge-costs are shared among the involved agents. We show that employing such a cost-sharing rule yields even worse dynamic behavior..\",\"PeriodicalId\":353007,\"journal\":{\"name\":\"Proceedings of the twenty-fifth annual ACM symposium on Parallelism in algorithms and architectures\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the twenty-fifth annual ACM symposium on Parallelism in algorithms and architectures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2486159.2486185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the twenty-fifth annual ACM symposium on Parallelism in algorithms and architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2486159.2486185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We consider the dynamic behavior of several variants of the Network Creation Game, introduced by Fabrikant et al. [PODC'03]. Equilibrium networks in these models have desirable properties like low social cost and small diameter, which makes them attractive for the decentralized creation of overlay-networks. Unfortunately, due to the non-constructiveness of the Nash equilibrium, no distributed algorithm for finding such networks is known. We treat these games as sequential-move games and analyze if (uncoordinated) selfish play eventually converges to an equilibrium. Thus, we shed light on one of the most natural algorithms for this problem: distributed local search, where in each step some agent performs a myopic selfish improving move. We show that fast convergence is guaranteed for all versions of Swap Games, introduced by Alon et al. [SPAA'10], if the initial network is a tree. Furthermore, we prove that this process can be sped up to an almost optimal number of moves by employing a very natural move policy. Unfortunately, these positive results are no longer true if the initial network has cycles and we show the surprising result that even one non-tree edge suffices to destroy the convergence guarantee. This answers an open problem from Ehsani et al. [SPAA'11] in the negative. Moreover, we show that on non-tree networks no move policy can enforce convergence. We extend our negative results to the well-studied original version, where agents are allowed to buy and delete edges as well. For this model we prove that there is no convergence guarantee - even if all agents play optimally. Even worse, if played on a non-complete host-graph, then there are instances where no sequence of improving moves leads to a stable network. Furthermore, we analyze whether cost-sharing has positive impact on the convergence behavior. For this we consider a version by Corbo and Parkes [PODC'05] where bilateral consent is needed for the creation of an edge and where edge-costs are shared among the involved agents. We show that employing such a cost-sharing rule yields even worse dynamic behavior..