数据驱动企业原材料订购及最优运输方案研究

Kerun Mi, Hai-hua Gu, Jiacheng Liu, Liu Yang
{"title":"数据驱动企业原材料订购及最优运输方案研究","authors":"Kerun Mi, Hai-hua Gu, Jiacheng Liu, Liu Yang","doi":"10.1109/CACML55074.2022.00114","DOIUrl":null,"url":null,"abstract":"Ordering and transportation optimization of raw material is a classic problem in the field of optimization. Based on the analysis, evaluation and prediction of previous data, this paper fully considers the actual situation of ordering, transshipment and storage, and establishes a multistage and large-scale mixed integer linear programming model for ordering and transporting raw materials. Combined with extensive data background, select appropriate indicators, and establish supplier evaluation systems by using entropy weight-CRITIC and RTOPSIS method. GM (1,1) is used to predict the general trend, the ARIMA model is used to predict the random fluctuation items, and a grey time series prediction model is constructed to obtain the predicted values of the data of the supply and loss rate in the next cycle. The prediction result are introduced into the planning model as parameters, and the evaluation score are used to construct a satisfaction function. The final goal of mixed integer linear programming model, as well as the three goals of sorting, transferring and storing, are obtained by reduction process. Finally, this paper uses Gurobi to solve practical problems, and obtains the ordering scheme and transshipment scheme that are superior to the historical schemes in ordering cost, transshipment loss and storage cost.","PeriodicalId":137505,"journal":{"name":"2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML)","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Data-driven Enterprise Raw Material Ordering and Optimal Transportation Scheme\",\"authors\":\"Kerun Mi, Hai-hua Gu, Jiacheng Liu, Liu Yang\",\"doi\":\"10.1109/CACML55074.2022.00114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ordering and transportation optimization of raw material is a classic problem in the field of optimization. Based on the analysis, evaluation and prediction of previous data, this paper fully considers the actual situation of ordering, transshipment and storage, and establishes a multistage and large-scale mixed integer linear programming model for ordering and transporting raw materials. Combined with extensive data background, select appropriate indicators, and establish supplier evaluation systems by using entropy weight-CRITIC and RTOPSIS method. GM (1,1) is used to predict the general trend, the ARIMA model is used to predict the random fluctuation items, and a grey time series prediction model is constructed to obtain the predicted values of the data of the supply and loss rate in the next cycle. The prediction result are introduced into the planning model as parameters, and the evaluation score are used to construct a satisfaction function. The final goal of mixed integer linear programming model, as well as the three goals of sorting, transferring and storing, are obtained by reduction process. Finally, this paper uses Gurobi to solve practical problems, and obtains the ordering scheme and transshipment scheme that are superior to the historical schemes in ordering cost, transshipment loss and storage cost.\",\"PeriodicalId\":137505,\"journal\":{\"name\":\"2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML)\",\"volume\":\"141 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CACML55074.2022.00114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACML55074.2022.00114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

原材料的订购与运输优化是优化领域的一个经典问题。本文在对以往数据进行分析、评价和预测的基础上,充分考虑了原材料订货、转运和储存的实际情况,建立了原材料订货和运输的多阶段大规模混合整数线性规划模型。结合广泛的数据背景,选择合适的指标,运用熵权-批评家法和RTOPSIS法建立供应商评价体系。采用GM(1,1)预测总趋势,ARIMA模型预测随机波动项,构建灰色时间序列预测模型,得到下一个周期的供损失率数据的预测值。将预测结果作为参数引入规划模型,并利用评价分数构造满意度函数。通过约简得到混合整数线性规划模型的最终目标,以及排序、传输和存储三个目标。最后利用Gurobi解决实际问题,得到了在订货成本、转运损失和储存成本方面优于历史方案的订货方案和转运方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Data-driven Enterprise Raw Material Ordering and Optimal Transportation Scheme
Ordering and transportation optimization of raw material is a classic problem in the field of optimization. Based on the analysis, evaluation and prediction of previous data, this paper fully considers the actual situation of ordering, transshipment and storage, and establishes a multistage and large-scale mixed integer linear programming model for ordering and transporting raw materials. Combined with extensive data background, select appropriate indicators, and establish supplier evaluation systems by using entropy weight-CRITIC and RTOPSIS method. GM (1,1) is used to predict the general trend, the ARIMA model is used to predict the random fluctuation items, and a grey time series prediction model is constructed to obtain the predicted values of the data of the supply and loss rate in the next cycle. The prediction result are introduced into the planning model as parameters, and the evaluation score are used to construct a satisfaction function. The final goal of mixed integer linear programming model, as well as the three goals of sorting, transferring and storing, are obtained by reduction process. Finally, this paper uses Gurobi to solve practical problems, and obtains the ordering scheme and transshipment scheme that are superior to the historical schemes in ordering cost, transshipment loss and storage cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信