一种用于神经网络训练的混合引力搜索算法——遗传算法

Saeideh Sheikhpour, M. Sabouri, S. Zahiri
{"title":"一种用于神经网络训练的混合引力搜索算法——遗传算法","authors":"Saeideh Sheikhpour, M. Sabouri, S. Zahiri","doi":"10.1109/IRANIANCEE.2013.6599894","DOIUrl":null,"url":null,"abstract":"Tuning optimum parameter of neural networks, such as weights and biases, has major effects on their performance improvement. Estimation of optimum values for these parameters requires strong and effective training methods, so that the error of the training data reaches its minimum. This paper presents, a suitable training method for optimizing neural networks parameters using a novel hybrid GA-GSA algorithm. Extensive experimental results on different benchmarks show that the hybrid algorithm, performs equal to or better than standard GSA, and backpropagation algorithm.","PeriodicalId":383315,"journal":{"name":"2013 21st Iranian Conference on Electrical Engineering (ICEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"A hybrid Gravitational search algorithm — Genetic algorithm for neural network training\",\"authors\":\"Saeideh Sheikhpour, M. Sabouri, S. Zahiri\",\"doi\":\"10.1109/IRANIANCEE.2013.6599894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tuning optimum parameter of neural networks, such as weights and biases, has major effects on their performance improvement. Estimation of optimum values for these parameters requires strong and effective training methods, so that the error of the training data reaches its minimum. This paper presents, a suitable training method for optimizing neural networks parameters using a novel hybrid GA-GSA algorithm. Extensive experimental results on different benchmarks show that the hybrid algorithm, performs equal to or better than standard GSA, and backpropagation algorithm.\",\"PeriodicalId\":383315,\"journal\":{\"name\":\"2013 21st Iranian Conference on Electrical Engineering (ICEE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 21st Iranian Conference on Electrical Engineering (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRANIANCEE.2013.6599894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 21st Iranian Conference on Electrical Engineering (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANCEE.2013.6599894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

神经网络的最优参数如权值和偏置的调整对神经网络性能的提高有重要的影响。这些参数的最优值的估计需要强大而有效的训练方法,使训练数据的误差达到最小。本文提出了一种新的混合GA-GSA算法用于神经网络参数优化的训练方法。在不同基准测试上的大量实验结果表明,混合算法的性能等于或优于标准GSA和反向传播算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid Gravitational search algorithm — Genetic algorithm for neural network training
Tuning optimum parameter of neural networks, such as weights and biases, has major effects on their performance improvement. Estimation of optimum values for these parameters requires strong and effective training methods, so that the error of the training data reaches its minimum. This paper presents, a suitable training method for optimizing neural networks parameters using a novel hybrid GA-GSA algorithm. Extensive experimental results on different benchmarks show that the hybrid algorithm, performs equal to or better than standard GSA, and backpropagation algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信