基于秩距的最近弦的遗传逼近

Liviu P. Dinu, Radu Tudor Ionescu
{"title":"基于秩距的最近弦的遗传逼近","authors":"Liviu P. Dinu, Radu Tudor Ionescu","doi":"10.1109/SYNASC.2011.31","DOIUrl":null,"url":null,"abstract":"This paper aims to fully present a new genetic approach that uses rank distance for solving two known NP complete problems: closest string and closest sub string. We build a genetic algorithm for each of the two problems and we describe the genetic operations involved. The genetic algorithm adapted for the closest sub string problem uses standard genetic operations, while the genetic operations for the closest string problem are only inspired from nature. Both genetic algorithms bring something new by using a fitness function based on rank distance. The tests for both problems show that our genetic approach via rank distance has good results.","PeriodicalId":184344,"journal":{"name":"2011 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Genetic Approximation of Closest String via Rank Distance\",\"authors\":\"Liviu P. Dinu, Radu Tudor Ionescu\",\"doi\":\"10.1109/SYNASC.2011.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to fully present a new genetic approach that uses rank distance for solving two known NP complete problems: closest string and closest sub string. We build a genetic algorithm for each of the two problems and we describe the genetic operations involved. The genetic algorithm adapted for the closest sub string problem uses standard genetic operations, while the genetic operations for the closest string problem are only inspired from nature. Both genetic algorithms bring something new by using a fitness function based on rank distance. The tests for both problems show that our genetic approach via rank distance has good results.\",\"PeriodicalId\":184344,\"journal\":{\"name\":\"2011 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2011.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2011.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种新的遗传方法,利用秩距离来求解两个已知的NP完全问题:最接近串和最接近子串。我们为这两个问题分别建立了一个遗传算法,并描述了所涉及的遗传操作。适用于最近子串问题的遗传算法使用标准的遗传操作,而适用于最近子串问题的遗传操作仅来自自然界的启发。这两种遗传算法都采用了基于秩距离的适应度函数。对这两个问题的测试表明,基于秩距的遗传方法具有良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Genetic Approximation of Closest String via Rank Distance
This paper aims to fully present a new genetic approach that uses rank distance for solving two known NP complete problems: closest string and closest sub string. We build a genetic algorithm for each of the two problems and we describe the genetic operations involved. The genetic algorithm adapted for the closest sub string problem uses standard genetic operations, while the genetic operations for the closest string problem are only inspired from nature. Both genetic algorithms bring something new by using a fitness function based on rank distance. The tests for both problems show that our genetic approach via rank distance has good results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信