推荐系统的强化模型不可知论反事实解释

Ao Chang, Qingxian Wang
{"title":"推荐系统的强化模型不可知论反事实解释","authors":"Ao Chang, Qingxian Wang","doi":"10.1117/12.2682249","DOIUrl":null,"url":null,"abstract":"Explanation is an important requirement for transparent and trustworthy recommender systems. When the recommendation model itself is not explainable, an explanation must be generated post-hoc. In contrast to traditional post-hoc explanation methods, counterfactual methods can provide scrutable and actionable explanations with high fidelity. Existing counterfactual explanation methods for recommender systems are either not generalizable or face a huge search space. In this work, we propose a reinforcement learning counterfactual explanation method MACER (Model-Agnostic Counterfactual Explanations for Recommender Systems) which generates item-based explanations for recommender systems. We embed the discrete action space into a continuous space, making it possible to use the process of finding counterfactual explanations as a task of reinforcement learning. This method treats the recommender system as a black box (model-agnostic) and has no requirement on the type of recommender system, and thus is applicable to all recommendation systems.","PeriodicalId":177416,"journal":{"name":"Conference on Electronic Information Engineering and Data Processing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforced model-agnostic counterfactual explanations for recommender systems\",\"authors\":\"Ao Chang, Qingxian Wang\",\"doi\":\"10.1117/12.2682249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Explanation is an important requirement for transparent and trustworthy recommender systems. When the recommendation model itself is not explainable, an explanation must be generated post-hoc. In contrast to traditional post-hoc explanation methods, counterfactual methods can provide scrutable and actionable explanations with high fidelity. Existing counterfactual explanation methods for recommender systems are either not generalizable or face a huge search space. In this work, we propose a reinforcement learning counterfactual explanation method MACER (Model-Agnostic Counterfactual Explanations for Recommender Systems) which generates item-based explanations for recommender systems. We embed the discrete action space into a continuous space, making it possible to use the process of finding counterfactual explanations as a task of reinforcement learning. This method treats the recommender system as a black box (model-agnostic) and has no requirement on the type of recommender system, and thus is applicable to all recommendation systems.\",\"PeriodicalId\":177416,\"journal\":{\"name\":\"Conference on Electronic Information Engineering and Data Processing\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Electronic Information Engineering and Data Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2682249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Electronic Information Engineering and Data Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2682249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

解释是透明和值得信赖的推荐系统的重要要求。当推荐模型本身无法解释时,必须事后生成解释。与传统的事后解释方法相比,反事实方法可以提供高保真度的可解析和可操作的解释。现有的针对推荐系统的反事实解释方法要么不能泛化,要么面临巨大的搜索空间。在这项工作中,我们提出了一种强化学习反事实解释方法MACER(模型不可知论反事实解释推荐系统),它为推荐系统生成基于项目的解释。我们将离散的动作空间嵌入到连续的空间中,从而可以将寻找反事实解释的过程作为强化学习的任务。该方法将推荐系统视为黑盒(模型不可知),对推荐系统的类型没有要求,因此适用于所有的推荐系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforced model-agnostic counterfactual explanations for recommender systems
Explanation is an important requirement for transparent and trustworthy recommender systems. When the recommendation model itself is not explainable, an explanation must be generated post-hoc. In contrast to traditional post-hoc explanation methods, counterfactual methods can provide scrutable and actionable explanations with high fidelity. Existing counterfactual explanation methods for recommender systems are either not generalizable or face a huge search space. In this work, we propose a reinforcement learning counterfactual explanation method MACER (Model-Agnostic Counterfactual Explanations for Recommender Systems) which generates item-based explanations for recommender systems. We embed the discrete action space into a continuous space, making it possible to use the process of finding counterfactual explanations as a task of reinforcement learning. This method treats the recommender system as a black box (model-agnostic) and has no requirement on the type of recommender system, and thus is applicable to all recommendation systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信