{"title":"近似最大流量最小(多)切定理及其应用","authors":"Naveen Garg, V. Vazirani, M. Yannakakis","doi":"10.1145/167088.167266","DOIUrl":null,"url":null,"abstract":"Consider the multicommodity flow problem in which the object is to maximize the sum of commodities routed. We prove the following approximate max-flow min-multicut theorem: $$ \\dst \\frac{\\mbox{\\rm min multicut}}{O(\\log k)} \\leq \\mbox{ \\rm max flow } \\leq \\mbox{ \\rm min multicut}, $$ \\noindent where $k$ is the number of commodities. Our proof is constructive; it enables us to find a multicut within $O(\\log k)$ of the max flow (and hence also the optimal multicut). In addition, the proof technique provides a unified framework in which one can also analyse the case of flows with specified demands of Leighton and Rao and Klein et al. and thereby obtain an improved bound for the latter problem.","PeriodicalId":280602,"journal":{"name":"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing","volume":"352 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"435","resultStr":"{\"title\":\"Approximate max-flow min-(multi)cut theorems and their applications\",\"authors\":\"Naveen Garg, V. Vazirani, M. Yannakakis\",\"doi\":\"10.1145/167088.167266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the multicommodity flow problem in which the object is to maximize the sum of commodities routed. We prove the following approximate max-flow min-multicut theorem: $$ \\\\dst \\\\frac{\\\\mbox{\\\\rm min multicut}}{O(\\\\log k)} \\\\leq \\\\mbox{ \\\\rm max flow } \\\\leq \\\\mbox{ \\\\rm min multicut}, $$ \\\\noindent where $k$ is the number of commodities. Our proof is constructive; it enables us to find a multicut within $O(\\\\log k)$ of the max flow (and hence also the optimal multicut). In addition, the proof technique provides a unified framework in which one can also analyse the case of flows with specified demands of Leighton and Rao and Klein et al. and thereby obtain an improved bound for the latter problem.\",\"PeriodicalId\":280602,\"journal\":{\"name\":\"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing\",\"volume\":\"352 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"435\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/167088.167266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/167088.167266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 435
摘要
考虑多商品流动问题,其目标是使所运输的商品总数最大化。我们证明了以下近似的最大流量最小多切定理:$$ \dst \frac{\mbox{\rm min multicut}}{O(\log k)} \leq \mbox{ \rm max flow } \leq \mbox{ \rm min multicut}, $$\noindent其中$k$为商品数量。我们的证明是建设性的;它使我们能够在最大流量的$O(\log k)$内找到一个多路切割(因此也是最佳多路切割)。此外,证明技术提供了一个统一的框架,在这个框架中,人们还可以分析Leighton、Rao和Klein等人具有特定需求的流的情况,从而获得后一个问题的改进界。
Approximate max-flow min-(multi)cut theorems and their applications
Consider the multicommodity flow problem in which the object is to maximize the sum of commodities routed. We prove the following approximate max-flow min-multicut theorem: $$ \dst \frac{\mbox{\rm min multicut}}{O(\log k)} \leq \mbox{ \rm max flow } \leq \mbox{ \rm min multicut}, $$ \noindent where $k$ is the number of commodities. Our proof is constructive; it enables us to find a multicut within $O(\log k)$ of the max flow (and hence also the optimal multicut). In addition, the proof technique provides a unified framework in which one can also analyse the case of flows with specified demands of Leighton and Rao and Klein et al. and thereby obtain an improved bound for the latter problem.