近似最大流量最小(多)切定理及其应用

Naveen Garg, V. Vazirani, M. Yannakakis
{"title":"近似最大流量最小(多)切定理及其应用","authors":"Naveen Garg, V. Vazirani, M. Yannakakis","doi":"10.1145/167088.167266","DOIUrl":null,"url":null,"abstract":"Consider the multicommodity flow problem in which the object is to maximize the sum of commodities routed. We prove the following approximate max-flow min-multicut theorem: $$ \\dst \\frac{\\mbox{\\rm min multicut}}{O(\\log k)} \\leq \\mbox{ \\rm max flow } \\leq \\mbox{ \\rm min multicut}, $$ \\noindent where $k$ is the number of commodities. Our proof is constructive; it enables us to find a multicut within $O(\\log k)$ of the max flow (and hence also the optimal multicut). In addition, the proof technique provides a unified framework in which one can also analyse the case of flows with specified demands of Leighton and Rao and Klein et al. and thereby obtain an improved bound for the latter problem.","PeriodicalId":280602,"journal":{"name":"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing","volume":"352 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"435","resultStr":"{\"title\":\"Approximate max-flow min-(multi)cut theorems and their applications\",\"authors\":\"Naveen Garg, V. Vazirani, M. Yannakakis\",\"doi\":\"10.1145/167088.167266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the multicommodity flow problem in which the object is to maximize the sum of commodities routed. We prove the following approximate max-flow min-multicut theorem: $$ \\\\dst \\\\frac{\\\\mbox{\\\\rm min multicut}}{O(\\\\log k)} \\\\leq \\\\mbox{ \\\\rm max flow } \\\\leq \\\\mbox{ \\\\rm min multicut}, $$ \\\\noindent where $k$ is the number of commodities. Our proof is constructive; it enables us to find a multicut within $O(\\\\log k)$ of the max flow (and hence also the optimal multicut). In addition, the proof technique provides a unified framework in which one can also analyse the case of flows with specified demands of Leighton and Rao and Klein et al. and thereby obtain an improved bound for the latter problem.\",\"PeriodicalId\":280602,\"journal\":{\"name\":\"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing\",\"volume\":\"352 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"435\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/167088.167266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/167088.167266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 435

摘要

考虑多商品流动问题,其目标是使所运输的商品总数最大化。我们证明了以下近似的最大流量最小多切定理:$$ \dst \frac{\mbox{\rm min multicut}}{O(\log k)} \leq \mbox{ \rm max flow } \leq \mbox{ \rm min multicut}, $$\noindent其中$k$为商品数量。我们的证明是建设性的;它使我们能够在最大流量的$O(\log k)$内找到一个多路切割(因此也是最佳多路切割)。此外,证明技术提供了一个统一的框架,在这个框架中,人们还可以分析Leighton、Rao和Klein等人具有特定需求的流的情况,从而获得后一个问题的改进界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate max-flow min-(multi)cut theorems and their applications
Consider the multicommodity flow problem in which the object is to maximize the sum of commodities routed. We prove the following approximate max-flow min-multicut theorem: $$ \dst \frac{\mbox{\rm min multicut}}{O(\log k)} \leq \mbox{ \rm max flow } \leq \mbox{ \rm min multicut}, $$ \noindent where $k$ is the number of commodities. Our proof is constructive; it enables us to find a multicut within $O(\log k)$ of the max flow (and hence also the optimal multicut). In addition, the proof technique provides a unified framework in which one can also analyse the case of flows with specified demands of Leighton and Rao and Klein et al. and thereby obtain an improved bound for the latter problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信