{"title":"一个从单目视频中提取3D Avatar-Ready手势动画的工具","authors":"Andrew W. Feng, Samuel Shin, Youngwoo Yoon","doi":"10.1145/3561975.3562953","DOIUrl":null,"url":null,"abstract":"Modeling and generating realistic human gesture animations from speech audios has great impacts on creating a believable virtual human that can interact with human users and mimic real-world face-to-face communications. Large-scale datasets are essential in data-driven research, but creating multi-modal gesture datasets with 3D gesture motions and corresponding speech audios is either expensive to create via traditional workflow such as mocap, or producing subpar results via pose estimations from in-the-wild videos. As a result of such limitations, existing gesture datasets either suffer from shorter duration or lower animation quality, making them less ideal for training gesture synthesis models. Motivated by the key limitations from previous datasets and recent progress in human mesh recovery (HMR), we developed a tool for extracting avatar-ready gesture motions from monocular videos with improved animation quality. The tool utilizes a variational autoencoder (VAE) to refine raw gesture motions. The resulting gestures are in a unified pose representation that includes both body and finger motions and can be readily applied to a virtual avatar via online motion retargeting. We validated the proposed tool on existing datasets and created the refined dataset TED-SMPLX by re-processing videos from the original TED dataset. The new dataset is available at https://andrewfengusa.github.io/TED_SMPLX_Dataset.","PeriodicalId":246179,"journal":{"name":"Proceedings of the 15th ACM SIGGRAPH Conference on Motion, Interaction and Games","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Tool for Extracting 3D Avatar-Ready Gesture Animations from Monocular Videos\",\"authors\":\"Andrew W. Feng, Samuel Shin, Youngwoo Yoon\",\"doi\":\"10.1145/3561975.3562953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling and generating realistic human gesture animations from speech audios has great impacts on creating a believable virtual human that can interact with human users and mimic real-world face-to-face communications. Large-scale datasets are essential in data-driven research, but creating multi-modal gesture datasets with 3D gesture motions and corresponding speech audios is either expensive to create via traditional workflow such as mocap, or producing subpar results via pose estimations from in-the-wild videos. As a result of such limitations, existing gesture datasets either suffer from shorter duration or lower animation quality, making them less ideal for training gesture synthesis models. Motivated by the key limitations from previous datasets and recent progress in human mesh recovery (HMR), we developed a tool for extracting avatar-ready gesture motions from monocular videos with improved animation quality. The tool utilizes a variational autoencoder (VAE) to refine raw gesture motions. The resulting gestures are in a unified pose representation that includes both body and finger motions and can be readily applied to a virtual avatar via online motion retargeting. We validated the proposed tool on existing datasets and created the refined dataset TED-SMPLX by re-processing videos from the original TED dataset. The new dataset is available at https://andrewfengusa.github.io/TED_SMPLX_Dataset.\",\"PeriodicalId\":246179,\"journal\":{\"name\":\"Proceedings of the 15th ACM SIGGRAPH Conference on Motion, Interaction and Games\",\"volume\":\"199 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 15th ACM SIGGRAPH Conference on Motion, Interaction and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3561975.3562953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM SIGGRAPH Conference on Motion, Interaction and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3561975.3562953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Tool for Extracting 3D Avatar-Ready Gesture Animations from Monocular Videos
Modeling and generating realistic human gesture animations from speech audios has great impacts on creating a believable virtual human that can interact with human users and mimic real-world face-to-face communications. Large-scale datasets are essential in data-driven research, but creating multi-modal gesture datasets with 3D gesture motions and corresponding speech audios is either expensive to create via traditional workflow such as mocap, or producing subpar results via pose estimations from in-the-wild videos. As a result of such limitations, existing gesture datasets either suffer from shorter duration or lower animation quality, making them less ideal for training gesture synthesis models. Motivated by the key limitations from previous datasets and recent progress in human mesh recovery (HMR), we developed a tool for extracting avatar-ready gesture motions from monocular videos with improved animation quality. The tool utilizes a variational autoencoder (VAE) to refine raw gesture motions. The resulting gestures are in a unified pose representation that includes both body and finger motions and can be readily applied to a virtual avatar via online motion retargeting. We validated the proposed tool on existing datasets and created the refined dataset TED-SMPLX by re-processing videos from the original TED dataset. The new dataset is available at https://andrewfengusa.github.io/TED_SMPLX_Dataset.