面向服务云的基于概率sla的排队论和进化部署优化

H. Wada, J. Suzuki, Katsuya Oba
{"title":"面向服务云的基于概率sla的排队论和进化部署优化","authors":"H. Wada, J. Suzuki, Katsuya Oba","doi":"10.1109/SERVICES-I.2009.59","DOIUrl":null,"url":null,"abstract":"This paper focuses on service deployment optimization in cloud computing environments. In a cloud, each service in an application is deployed as one or more service instances. Different service instances operate at different quality of service (QoS) levels. In order to satisfy given service level agreements (SLAs) as end-to-end QoS requirements of an application, the application is required to optimize its deployment configuration of service instances. $E^3/Q$ is a multiobjective genetic algorithm to solve this problem. By leveraging queuing theory, $E^3/Q$ estimates the performance of an application and allows for defining SLAs in a probabilistic manner. Simulation results demonstrate that $E^3/Q$ efficiently obtains deployment configurations that satisfy given SLAs.","PeriodicalId":159235,"journal":{"name":"2009 Congress on Services - I","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Queuing Theoretic and Evolutionary Deployment Optimization with Probabilistic SLAs for Service Oriented Clouds\",\"authors\":\"H. Wada, J. Suzuki, Katsuya Oba\",\"doi\":\"10.1109/SERVICES-I.2009.59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on service deployment optimization in cloud computing environments. In a cloud, each service in an application is deployed as one or more service instances. Different service instances operate at different quality of service (QoS) levels. In order to satisfy given service level agreements (SLAs) as end-to-end QoS requirements of an application, the application is required to optimize its deployment configuration of service instances. $E^3/Q$ is a multiobjective genetic algorithm to solve this problem. By leveraging queuing theory, $E^3/Q$ estimates the performance of an application and allows for defining SLAs in a probabilistic manner. Simulation results demonstrate that $E^3/Q$ efficiently obtains deployment configurations that satisfy given SLAs.\",\"PeriodicalId\":159235,\"journal\":{\"name\":\"2009 Congress on Services - I\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Congress on Services - I\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SERVICES-I.2009.59\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Congress on Services - I","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERVICES-I.2009.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

本文主要研究云计算环境下的业务部署优化问题。在云中,应用程序中的每个服务都部署为一个或多个服务实例。不同的服务实例以不同的服务质量(QoS)级别运行。为了满足给定的服务水平协议(sla)作为应用程序的端到端QoS需求,应用程序需要优化其服务实例的部署配置。$E^3/Q$是解决这一问题的多目标遗传算法。通过利用排队理论,$E^3/Q$估计应用程序的性能,并允许以概率方式定义sla。仿真结果表明,$E^3/Q$可以有效地获得满足给定sla的部署配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Queuing Theoretic and Evolutionary Deployment Optimization with Probabilistic SLAs for Service Oriented Clouds
This paper focuses on service deployment optimization in cloud computing environments. In a cloud, each service in an application is deployed as one or more service instances. Different service instances operate at different quality of service (QoS) levels. In order to satisfy given service level agreements (SLAs) as end-to-end QoS requirements of an application, the application is required to optimize its deployment configuration of service instances. $E^3/Q$ is a multiobjective genetic algorithm to solve this problem. By leveraging queuing theory, $E^3/Q$ estimates the performance of an application and allows for defining SLAs in a probabilistic manner. Simulation results demonstrate that $E^3/Q$ efficiently obtains deployment configurations that satisfy given SLAs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信