双环自组织递归小波神经网络自适应非线性扰动观测器用于两轴运动控制系统

F. El-Sousy, K. Abuhasel
{"title":"双环自组织递归小波神经网络自适应非线性扰动观测器用于两轴运动控制系统","authors":"F. El-Sousy, K. Abuhasel","doi":"10.1109/IAS.2016.7731869","DOIUrl":null,"url":null,"abstract":"This paper proposes an adaptive nonlinear disturbance observer (ANDO) for identification and control of a two-axis motion control system driven by two permanent-magnet linear synchronous motors (PMLSMs) servo drives. The proposed control scheme incorporates a feedback linearization controller (FLC), a new double loop self-organizing recurrent wavelet neural network (DLSORWNN) controller, a robust controller and an ℋ∞ controller. First, a FLC is designed to stabilize the X-Y table system. Then, a NDO is designed to estimate the nonlinear lumped parameters uncertainties that include the external disturbances, cross-coupled interference and frictional force. However, the X-Y table performance is degraded by the NDO error due to parameter uncertainties. To improve the robustness, the ANDO is designed to attain this purpose. In addition, the robust controller is designed to recover the approximation error of the DLSORWNN while the ℋ∞ controller is specified such that the quadratic cost function is minimized and the worst case effect of NDO error must be attenuated below a desired attenuation level. The online adaptive control laws are derived using the Lyapunov stability analysis and ℋ∞ control theory, so that the stability of the ANDO can be guaranteed. The experimental results show the improvements in disturbance suppression and parameter uncertainties, which illustrate the superiority of the ANDO control scheme.","PeriodicalId":306377,"journal":{"name":"2016 IEEE Industry Applications Society Annual Meeting","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Adaptive nonlinear disturbance observer using double loop self-organizing recurrent wavelet-neural-network for two-axis motion control system\",\"authors\":\"F. El-Sousy, K. Abuhasel\",\"doi\":\"10.1109/IAS.2016.7731869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an adaptive nonlinear disturbance observer (ANDO) for identification and control of a two-axis motion control system driven by two permanent-magnet linear synchronous motors (PMLSMs) servo drives. The proposed control scheme incorporates a feedback linearization controller (FLC), a new double loop self-organizing recurrent wavelet neural network (DLSORWNN) controller, a robust controller and an ℋ∞ controller. First, a FLC is designed to stabilize the X-Y table system. Then, a NDO is designed to estimate the nonlinear lumped parameters uncertainties that include the external disturbances, cross-coupled interference and frictional force. However, the X-Y table performance is degraded by the NDO error due to parameter uncertainties. To improve the robustness, the ANDO is designed to attain this purpose. In addition, the robust controller is designed to recover the approximation error of the DLSORWNN while the ℋ∞ controller is specified such that the quadratic cost function is minimized and the worst case effect of NDO error must be attenuated below a desired attenuation level. The online adaptive control laws are derived using the Lyapunov stability analysis and ℋ∞ control theory, so that the stability of the ANDO can be guaranteed. The experimental results show the improvements in disturbance suppression and parameter uncertainties, which illustrate the superiority of the ANDO control scheme.\",\"PeriodicalId\":306377,\"journal\":{\"name\":\"2016 IEEE Industry Applications Society Annual Meeting\",\"volume\":\"159 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Industry Applications Society Annual Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAS.2016.7731869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Industry Applications Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2016.7731869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

提出了一种自适应非线性扰动观测器(ANDO)来识别和控制由两个永磁直线同步电机(PMLSMs)伺服驱动的双轴运动控制系统。该控制方案采用反馈线性化控制器(FLC)、新型双环自组织递归小波神经网络(DLSORWNN)控制器、鲁棒控制器和h∞控制器。首先,设计了FLC来稳定X-Y工作台系统。然后,设计了一个NDO来估计包括外部干扰、交叉耦合干扰和摩擦力在内的非线性集总参数不确定性。但是,由于参数的不确定性导致的NDO误差会降低X-Y表的性能。为了提高鲁棒性,安藤的设计就是为了达到这个目的。此外,设计了鲁棒控制器来恢复DLSORWNN的近似误差,同时指定了h∞控制器,使二次代价函数最小化,并且必须将NDO误差的最坏影响衰减到所需的衰减水平以下。利用李雅普诺夫稳定性分析和h∞控制理论推导出在线自适应控制律,从而保证了ANDO的稳定性。实验结果表明,该控制方案在干扰抑制和参数不确定性方面取得了一定的改善,说明了ANDO控制方案的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive nonlinear disturbance observer using double loop self-organizing recurrent wavelet-neural-network for two-axis motion control system
This paper proposes an adaptive nonlinear disturbance observer (ANDO) for identification and control of a two-axis motion control system driven by two permanent-magnet linear synchronous motors (PMLSMs) servo drives. The proposed control scheme incorporates a feedback linearization controller (FLC), a new double loop self-organizing recurrent wavelet neural network (DLSORWNN) controller, a robust controller and an ℋ∞ controller. First, a FLC is designed to stabilize the X-Y table system. Then, a NDO is designed to estimate the nonlinear lumped parameters uncertainties that include the external disturbances, cross-coupled interference and frictional force. However, the X-Y table performance is degraded by the NDO error due to parameter uncertainties. To improve the robustness, the ANDO is designed to attain this purpose. In addition, the robust controller is designed to recover the approximation error of the DLSORWNN while the ℋ∞ controller is specified such that the quadratic cost function is minimized and the worst case effect of NDO error must be attenuated below a desired attenuation level. The online adaptive control laws are derived using the Lyapunov stability analysis and ℋ∞ control theory, so that the stability of the ANDO can be guaranteed. The experimental results show the improvements in disturbance suppression and parameter uncertainties, which illustrate the superiority of the ANDO control scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信