使用高阶累积量的非线性LMS优化分解表面肌电信号

Eric Plévin, D. Zazula
{"title":"使用高阶累积量的非线性LMS优化分解表面肌电信号","authors":"Eric Plévin, D. Zazula","doi":"10.1109/CBMS.2002.1011369","DOIUrl":null,"url":null,"abstract":"Deals with the problem of decomposition of surface electromyograms (SEMG). According to the physiological facts, a multiple-input multiple-output (MIMO) is used. The measured signals are taken as the channel responses corresponding to the motor-unit action potentials (MUAPs) convolution by the innervation pulse trains. The decomposition is based on the third-order cumulants whose values enter as coefficients of nonlinear system of equations. The system is solved by nonlinear least mean square (LMS) optimisation. Synthetic SEMG signals from a MIMO(2,3) with additive Gaussian noise with SNRs of 10 and 0 dB prove that a successful multichannel decomposition is possible also in very noisy environments.","PeriodicalId":369629,"journal":{"name":"Proceedings of 15th IEEE Symposium on Computer-Based Medical Systems (CBMS 2002)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Decomposition of surface EMG signals using non-linear LMS optimisation of higher-order cumulants\",\"authors\":\"Eric Plévin, D. Zazula\",\"doi\":\"10.1109/CBMS.2002.1011369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deals with the problem of decomposition of surface electromyograms (SEMG). According to the physiological facts, a multiple-input multiple-output (MIMO) is used. The measured signals are taken as the channel responses corresponding to the motor-unit action potentials (MUAPs) convolution by the innervation pulse trains. The decomposition is based on the third-order cumulants whose values enter as coefficients of nonlinear system of equations. The system is solved by nonlinear least mean square (LMS) optimisation. Synthetic SEMG signals from a MIMO(2,3) with additive Gaussian noise with SNRs of 10 and 0 dB prove that a successful multichannel decomposition is possible also in very noisy environments.\",\"PeriodicalId\":369629,\"journal\":{\"name\":\"Proceedings of 15th IEEE Symposium on Computer-Based Medical Systems (CBMS 2002)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 15th IEEE Symposium on Computer-Based Medical Systems (CBMS 2002)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2002.1011369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 15th IEEE Symposium on Computer-Based Medical Systems (CBMS 2002)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2002.1011369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

研究了表面肌电图的分解问题。根据生理特点,采用多输入多输出(MIMO)方式。测量到的信号作为与神经支配脉冲序列的运动单元动作电位(MUAPs)卷积相对应的通道响应。分解是基于三阶累积量,其值作为非线性方程组的系数输入。采用非线性最小均方优化方法对系统进行求解。具有加性高斯噪声(信噪比分别为10 dB和0 dB)的MIMO(2,3)合成表面肌电信号证明了在非常嘈杂的环境中也可以成功地进行多通道分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decomposition of surface EMG signals using non-linear LMS optimisation of higher-order cumulants
Deals with the problem of decomposition of surface electromyograms (SEMG). According to the physiological facts, a multiple-input multiple-output (MIMO) is used. The measured signals are taken as the channel responses corresponding to the motor-unit action potentials (MUAPs) convolution by the innervation pulse trains. The decomposition is based on the third-order cumulants whose values enter as coefficients of nonlinear system of equations. The system is solved by nonlinear least mean square (LMS) optimisation. Synthetic SEMG signals from a MIMO(2,3) with additive Gaussian noise with SNRs of 10 and 0 dB prove that a successful multichannel decomposition is possible also in very noisy environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信