物理神经网络的多平面光转换设计

Zheyuan Zhu, Joe H. Doerr, Guifang Li, S. Pang
{"title":"物理神经网络的多平面光转换设计","authors":"Zheyuan Zhu, Joe H. Doerr, Guifang Li, S. Pang","doi":"10.1364/dh.2022.m6a.2","DOIUrl":null,"url":null,"abstract":"We present a physical neural network (PNN) approach towards multiplane light conversion (MPLC) design. PNN performs a full parameter search with flexible optimization pathways and can tune various design attributes as hyperparameters.","PeriodicalId":227456,"journal":{"name":"Digital Holography and 3-D Imaging 2022","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multiplane light conversion design with physical neural network\",\"authors\":\"Zheyuan Zhu, Joe H. Doerr, Guifang Li, S. Pang\",\"doi\":\"10.1364/dh.2022.m6a.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a physical neural network (PNN) approach towards multiplane light conversion (MPLC) design. PNN performs a full parameter search with flexible optimization pathways and can tune various design attributes as hyperparameters.\",\"PeriodicalId\":227456,\"journal\":{\"name\":\"Digital Holography and 3-D Imaging 2022\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Holography and 3-D Imaging 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/dh.2022.m6a.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Holography and 3-D Imaging 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/dh.2022.m6a.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出一种基于物理神经网络的多平面光转换(MPLC)设计方法。PNN通过灵活的优化路径进行全参数搜索,并可以将各种设计属性作为超参数进行调优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiplane light conversion design with physical neural network
We present a physical neural network (PNN) approach towards multiplane light conversion (MPLC) design. PNN performs a full parameter search with flexible optimization pathways and can tune various design attributes as hyperparameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信