{"title":"基于神经网络的混合电影推荐系统","authors":"Christina Christakou, S. Vrettos, A. Stafylopatis","doi":"10.1142/S0218213007003540","DOIUrl":null,"url":null,"abstract":"Recently, there has been a lot of speculation among the members of the artificial intelligence community concerning the way AI can help with the problem of successful information search in the reservoirs of knowledge of Internet. Recommender systems provide a solution to this problem by giving individualized recommendations. Content-based and collaborative filtering are usually applied to predict these recommendations. A combination of the results of these two techniques is used in this work in order to construct a system that provides more precise recommendations concerning movies. The MovieLens data set was used to test the proposed hybrid system.","PeriodicalId":345842,"journal":{"name":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"126","resultStr":"{\"title\":\"A hybrid movie recommender system based on neural networks\",\"authors\":\"Christina Christakou, S. Vrettos, A. Stafylopatis\",\"doi\":\"10.1142/S0218213007003540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, there has been a lot of speculation among the members of the artificial intelligence community concerning the way AI can help with the problem of successful information search in the reservoirs of knowledge of Internet. Recommender systems provide a solution to this problem by giving individualized recommendations. Content-based and collaborative filtering are usually applied to predict these recommendations. A combination of the results of these two techniques is used in this work in order to construct a system that provides more precise recommendations concerning movies. The MovieLens data set was used to test the proposed hybrid system.\",\"PeriodicalId\":345842,\"journal\":{\"name\":\"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"126\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218213007003540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218213007003540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A hybrid movie recommender system based on neural networks
Recently, there has been a lot of speculation among the members of the artificial intelligence community concerning the way AI can help with the problem of successful information search in the reservoirs of knowledge of Internet. Recommender systems provide a solution to this problem by giving individualized recommendations. Content-based and collaborative filtering are usually applied to predict these recommendations. A combination of the results of these two techniques is used in this work in order to construct a system that provides more precise recommendations concerning movies. The MovieLens data set was used to test the proposed hybrid system.