Hind Zaaraoui, Z. Altman, S. B. Jemaa, E. Altman, T. Jiménez
{"title":"预测调度的启发式方法","authors":"Hind Zaaraoui, Z. Altman, S. B. Jemaa, E. Altman, T. Jiménez","doi":"10.1109/WCNCW.2018.8369018","DOIUrl":null,"url":null,"abstract":"Forecast Scheduling (FS) is a scheduling concept that utilizes rate prediction along the users' trajectories in order to optimize the scheduler allocation. The rate prediction is based on Signal to Interference plus Noise Ratio (SINR) or rate maps provided by a Radio Environment Map (REM). The FS has been formulated as a convex optimization problem namely the maximization of an α-fair utility function of the cumulated rates of the users along their trajectories [1]. This paper proposes a fast heuristic for the FS problem based on two FS users' scheduling. Furthermore, it is shown that in the case of two users, the FS problem can be solved analytically, making the heuristic computationally very efficient. Numerical results illustrate the throughput gain brought about by the scheduling solution.a","PeriodicalId":122391,"journal":{"name":"2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Heuristic approach for forecast scheduling\",\"authors\":\"Hind Zaaraoui, Z. Altman, S. B. Jemaa, E. Altman, T. Jiménez\",\"doi\":\"10.1109/WCNCW.2018.8369018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forecast Scheduling (FS) is a scheduling concept that utilizes rate prediction along the users' trajectories in order to optimize the scheduler allocation. The rate prediction is based on Signal to Interference plus Noise Ratio (SINR) or rate maps provided by a Radio Environment Map (REM). The FS has been formulated as a convex optimization problem namely the maximization of an α-fair utility function of the cumulated rates of the users along their trajectories [1]. This paper proposes a fast heuristic for the FS problem based on two FS users' scheduling. Furthermore, it is shown that in the case of two users, the FS problem can be solved analytically, making the heuristic computationally very efficient. Numerical results illustrate the throughput gain brought about by the scheduling solution.a\",\"PeriodicalId\":122391,\"journal\":{\"name\":\"2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCNCW.2018.8369018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNCW.2018.8369018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Forecast Scheduling (FS) is a scheduling concept that utilizes rate prediction along the users' trajectories in order to optimize the scheduler allocation. The rate prediction is based on Signal to Interference plus Noise Ratio (SINR) or rate maps provided by a Radio Environment Map (REM). The FS has been formulated as a convex optimization problem namely the maximization of an α-fair utility function of the cumulated rates of the users along their trajectories [1]. This paper proposes a fast heuristic for the FS problem based on two FS users' scheduling. Furthermore, it is shown that in the case of two users, the FS problem can be solved analytically, making the heuristic computationally very efficient. Numerical results illustrate the throughput gain brought about by the scheduling solution.a