Ising模型中的拓扑二象性

D. Freed, C. Teleman
{"title":"Ising模型中的拓扑二象性","authors":"D. Freed, C. Teleman","doi":"10.2140/gt.2022.26.1907","DOIUrl":null,"url":null,"abstract":"Author(s): Freed, Daniel S; Teleman, Constantin | Abstract: We relate two classical dualities in low-dimensional quantum field theory: Kramers-Wannier duality of the Ising and related lattice models in $2$ dimensions, with electromagnetic duality for finite gauge theories in $3$ dimensions. The relation is mediated by the notion of boundary field theory: Ising models are boundary theories for pure gauge theory in one dimension higher. Thus the Ising order/disorder operators are endpoints of Wilson/'t Hooft defects of gauge theory. Symmetry breaking on low-energy states reflects the multiplicity of topological boundary states. In the process we describe lattice theories as (extended) topological field theories with boundaries and domain walls. This allows us to generalize the duality to non-abelian groups; finite, semi-simple Hopf algebras; and, in a different direction, to finite homotopy theories in arbitrary dimension.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Topological dualities in the Ising model\",\"authors\":\"D. Freed, C. Teleman\",\"doi\":\"10.2140/gt.2022.26.1907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Author(s): Freed, Daniel S; Teleman, Constantin | Abstract: We relate two classical dualities in low-dimensional quantum field theory: Kramers-Wannier duality of the Ising and related lattice models in $2$ dimensions, with electromagnetic duality for finite gauge theories in $3$ dimensions. The relation is mediated by the notion of boundary field theory: Ising models are boundary theories for pure gauge theory in one dimension higher. Thus the Ising order/disorder operators are endpoints of Wilson/'t Hooft defects of gauge theory. Symmetry breaking on low-energy states reflects the multiplicity of topological boundary states. In the process we describe lattice theories as (extended) topological field theories with boundaries and domain walls. This allows us to generalize the duality to non-abelian groups; finite, semi-simple Hopf algebras; and, in a different direction, to finite homotopy theories in arbitrary dimension.\",\"PeriodicalId\":254292,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2022.26.1907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.1907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

作者:弗里德,丹尼尔·s;摘要:我们联系了低维量子场论中的两个经典对偶性:$2维的Ising及其相关晶格模型的Kramers-Wannier对偶性,以及$3维的有限规范理论的电磁对偶性。这种关系通过边界场理论的概念来中介:Ising模型是一维以上纯规范理论的边界理论。因此,Ising有序/无序算子是规范理论的Wilson/ t Hooft缺陷的端点。低能态的对称破缺反映了拓扑边界态的多重性。在此过程中,我们将点阵理论描述为具有边界和畴壁的(扩展的)拓扑场理论。这允许我们将对偶推广到非阿贝尔群;有限半简单Hopf代数;在另一个方向上,对于任意维的有限同伦理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological dualities in the Ising model
Author(s): Freed, Daniel S; Teleman, Constantin | Abstract: We relate two classical dualities in low-dimensional quantum field theory: Kramers-Wannier duality of the Ising and related lattice models in $2$ dimensions, with electromagnetic duality for finite gauge theories in $3$ dimensions. The relation is mediated by the notion of boundary field theory: Ising models are boundary theories for pure gauge theory in one dimension higher. Thus the Ising order/disorder operators are endpoints of Wilson/'t Hooft defects of gauge theory. Symmetry breaking on low-energy states reflects the multiplicity of topological boundary states. In the process we describe lattice theories as (extended) topological field theories with boundaries and domain walls. This allows us to generalize the duality to non-abelian groups; finite, semi-simple Hopf algebras; and, in a different direction, to finite homotopy theories in arbitrary dimension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信