一种改进配电系统电力需求时序预测的模糊方法

L. Moraes, R. Flauzino, M. Araújo, O. E. Batista
{"title":"一种改进配电系统电力需求时序预测的模糊方法","authors":"L. Moraes, R. Flauzino, M. Araújo, O. E. Batista","doi":"10.1109/PESMG.2013.6672491","DOIUrl":null,"url":null,"abstract":"This paper aims to introduce a methodology for choosing the best inputs and tuning a multilayer fuzzy inference system dedicated to estimate future time series power demand values in a substation feeder. On an iteration process, older data with greater correlation with the previous forecast errors are the inputs of the fuzzy system, which has as output a future demand value. It is attempted to estimate the largest possible horizon reaching the minimum forecast error. The obtained results are satisfactory, showing that the developed methodology is capable of picking a small number of inputs to forecast with accuracy different horizons.","PeriodicalId":433870,"journal":{"name":"2013 IEEE Power & Energy Society General Meeting","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A fuzzy methodology to improve time series forecast of power demand in distribution systems\",\"authors\":\"L. Moraes, R. Flauzino, M. Araújo, O. E. Batista\",\"doi\":\"10.1109/PESMG.2013.6672491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to introduce a methodology for choosing the best inputs and tuning a multilayer fuzzy inference system dedicated to estimate future time series power demand values in a substation feeder. On an iteration process, older data with greater correlation with the previous forecast errors are the inputs of the fuzzy system, which has as output a future demand value. It is attempted to estimate the largest possible horizon reaching the minimum forecast error. The obtained results are satisfactory, showing that the developed methodology is capable of picking a small number of inputs to forecast with accuracy different horizons.\",\"PeriodicalId\":433870,\"journal\":{\"name\":\"2013 IEEE Power & Energy Society General Meeting\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Power & Energy Society General Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PESMG.2013.6672491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Power & Energy Society General Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESMG.2013.6672491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文旨在介绍一种选择最佳输入和调整多层模糊推理系统的方法,该系统用于估计变电站馈线的未来时间序列电力需求值。在迭代过程中,与先前预测误差相关性较大的旧数据是模糊系统的输入,其输出是未来需求值。它试图估计达到最小预报误差的最大可能地平线。所得结果令人满意,表明所开发的方法能够选择少量的输入,以准确地预测不同的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fuzzy methodology to improve time series forecast of power demand in distribution systems
This paper aims to introduce a methodology for choosing the best inputs and tuning a multilayer fuzzy inference system dedicated to estimate future time series power demand values in a substation feeder. On an iteration process, older data with greater correlation with the previous forecast errors are the inputs of the fuzzy system, which has as output a future demand value. It is attempted to estimate the largest possible horizon reaching the minimum forecast error. The obtained results are satisfactory, showing that the developed methodology is capable of picking a small number of inputs to forecast with accuracy different horizons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信