简述:有界度网络的确定性支配集构造

R. Friedman, Alex Kogan
{"title":"简述:有界度网络的确定性支配集构造","authors":"R. Friedman, Alex Kogan","doi":"10.1145/1835698.1835767","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of calculating dominating sets in bounded degree networks. In these networks, the maximal degree of any node is bounded by δ, which is usually significantly smaller than n, the total number of nodes in the system. Such networks arise in various settings of wireless and peer-to-peer communication. A trivial approach of choosing all nodes into the dominating set yields an algorithm with an approximation ratio of δ + 1. We show that any deterministic algorithm with a non-trivial approximation ratio requires Ω(log* n) rounds, meaning effectively that no local o(δ)-approximation deterministic algorithm may ever exist. On the positive side, we show two deterministic algorithms that achieve log δ and 2 log δ-approximation in O(δ3 + log* n) and O(δ2 logδ + log* n) time, respectively. These algorithms rely on coloring rather than node IDs to break symmetry.","PeriodicalId":447863,"journal":{"name":"Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brief announcement: deterministic dominating set construction in networks with bounded degree\",\"authors\":\"R. Friedman, Alex Kogan\",\"doi\":\"10.1145/1835698.1835767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the problem of calculating dominating sets in bounded degree networks. In these networks, the maximal degree of any node is bounded by δ, which is usually significantly smaller than n, the total number of nodes in the system. Such networks arise in various settings of wireless and peer-to-peer communication. A trivial approach of choosing all nodes into the dominating set yields an algorithm with an approximation ratio of δ + 1. We show that any deterministic algorithm with a non-trivial approximation ratio requires Ω(log* n) rounds, meaning effectively that no local o(δ)-approximation deterministic algorithm may ever exist. On the positive side, we show two deterministic algorithms that achieve log δ and 2 log δ-approximation in O(δ3 + log* n) and O(δ2 logδ + log* n) time, respectively. These algorithms rely on coloring rather than node IDs to break symmetry.\",\"PeriodicalId\":447863,\"journal\":{\"name\":\"Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1835698.1835767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1835698.1835767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究有界度网络中控制集的计算问题。在这些网络中,任何节点的最大度都以δ为界,通常显著小于系统中节点总数n。这种网络出现在无线和点对点通信的各种设置中。选择所有节点进入支配集的简单方法产生一个近似比为δ + 1的算法。我们表明,任何具有非平凡近似比的确定性算法都需要Ω(log* n)轮,这实际上意味着不存在局部o(δ)近似确定性算法。在积极的方面,我们展示了两种确定性算法,分别在O(δ3 + log* n)和O(δ2 logδ + log* n)时间内实现logδ和2 logδ近似。这些算法依靠着色而不是节点id来打破对称性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brief announcement: deterministic dominating set construction in networks with bounded degree
This paper considers the problem of calculating dominating sets in bounded degree networks. In these networks, the maximal degree of any node is bounded by δ, which is usually significantly smaller than n, the total number of nodes in the system. Such networks arise in various settings of wireless and peer-to-peer communication. A trivial approach of choosing all nodes into the dominating set yields an algorithm with an approximation ratio of δ + 1. We show that any deterministic algorithm with a non-trivial approximation ratio requires Ω(log* n) rounds, meaning effectively that no local o(δ)-approximation deterministic algorithm may ever exist. On the positive side, we show two deterministic algorithms that achieve log δ and 2 log δ-approximation in O(δ3 + log* n) and O(δ2 logδ + log* n) time, respectively. These algorithms rely on coloring rather than node IDs to break symmetry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信