在现有的运行模式下,数据驱动的方法在配电馈线层面最大化太阳能光伏发电容量

J. Sward, K. M. Zhang
{"title":"在现有的运行模式下,数据驱动的方法在配电馈线层面最大化太阳能光伏发电容量","authors":"J. Sward, K. M. Zhang","doi":"10.1109/ISGT.2019.8791588","DOIUrl":null,"url":null,"abstract":"Recent rapid growth in solar photovoltaic (PV) marks a shift away from conventional generation, providing a strategy for stemming carbon emissions emanating from the electricity sector. However, solar PV often appears within distribution systems where existing infrastructure was designed under a central-station paradigm. Fortunately, smart grid technologies can aid integration of distributed energy resources through better characterization of how these resources affect the grid. Using a New York utility service territory as a test bed, we present a data-driven Monte Carlo framework that estimates the maximum installed solar PV capacity at the distribution feeder level subject to existing network constraints. Working with representative days that closely match a feeder's load profile, we probabilistically select PV systems according to current New York trends and stochastically model hourly electricity generation. We found 262,318 kW of solar PV could be added across the entire utility service territory meeting 14.14% of electricity demand.","PeriodicalId":182098,"journal":{"name":"2019 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)","volume":"224 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A data-driven approach for maximizing solar PV capacity at the distribution feeder level under existing operational paradigms\",\"authors\":\"J. Sward, K. M. Zhang\",\"doi\":\"10.1109/ISGT.2019.8791588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent rapid growth in solar photovoltaic (PV) marks a shift away from conventional generation, providing a strategy for stemming carbon emissions emanating from the electricity sector. However, solar PV often appears within distribution systems where existing infrastructure was designed under a central-station paradigm. Fortunately, smart grid technologies can aid integration of distributed energy resources through better characterization of how these resources affect the grid. Using a New York utility service territory as a test bed, we present a data-driven Monte Carlo framework that estimates the maximum installed solar PV capacity at the distribution feeder level subject to existing network constraints. Working with representative days that closely match a feeder's load profile, we probabilistically select PV systems according to current New York trends and stochastically model hourly electricity generation. We found 262,318 kW of solar PV could be added across the entire utility service territory meeting 14.14% of electricity demand.\",\"PeriodicalId\":182098,\"journal\":{\"name\":\"2019 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)\",\"volume\":\"224 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGT.2019.8791588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT.2019.8791588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近太阳能光伏发电(PV)的快速增长标志着传统发电的转变,为遏制电力部门的碳排放提供了一种策略。然而,太阳能光伏发电经常出现在配电系统中,而现有的基础设施是按照中心站模式设计的。幸运的是,智能电网技术可以通过更好地描述这些资源如何影响电网来帮助分布式能源的整合。以纽约公用事业服务区域为测试平台,我们提出了一个数据驱动的蒙特卡洛框架,该框架估计了受现有网络约束的配电馈线级别的最大安装太阳能光伏容量。我们根据纽约当前的趋势概率地选择PV系统,并随机模拟每小时发电量。我们发现,整个公用事业服务领域可以增加262,318千瓦的太阳能光伏发电,满足14.14%的电力需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A data-driven approach for maximizing solar PV capacity at the distribution feeder level under existing operational paradigms
Recent rapid growth in solar photovoltaic (PV) marks a shift away from conventional generation, providing a strategy for stemming carbon emissions emanating from the electricity sector. However, solar PV often appears within distribution systems where existing infrastructure was designed under a central-station paradigm. Fortunately, smart grid technologies can aid integration of distributed energy resources through better characterization of how these resources affect the grid. Using a New York utility service territory as a test bed, we present a data-driven Monte Carlo framework that estimates the maximum installed solar PV capacity at the distribution feeder level subject to existing network constraints. Working with representative days that closely match a feeder's load profile, we probabilistically select PV systems according to current New York trends and stochastically model hourly electricity generation. We found 262,318 kW of solar PV could be added across the entire utility service territory meeting 14.14% of electricity demand.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信